Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 58
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Meyer
1
70 kgHamilton
2
71 kgCuley
3
69 kgDurbridge
4
78 kgMcCarthy
5
63 kgHaas
6
71 kgHarper
7
67 kgHepburn
8
77 kgPower
10
68 kgHucker
11
68 kgCarman
13
66 kgSchultz
16
68 kgFreiberg
19
82 kgHindley
21
60 kgSunderland
23
67 kgJenner
24
64 kgOvett
25
64 kgDonohoe
29
62 kgVine
31
69 kgVolkers
33
67 kgVon Hoff
34
70 kg
1
70 kgHamilton
2
71 kgCuley
3
69 kgDurbridge
4
78 kgMcCarthy
5
63 kgHaas
6
71 kgHarper
7
67 kgHepburn
8
77 kgPower
10
68 kgHucker
11
68 kgCarman
13
66 kgSchultz
16
68 kgFreiberg
19
82 kgHindley
21
60 kgSunderland
23
67 kgJenner
24
64 kgOvett
25
64 kgDonohoe
29
62 kgVine
31
69 kgVolkers
33
67 kgVon Hoff
34
70 kg
Weight (KG) →
Result →
82
60
1
34
# | Rider | Weight (KG) |
---|---|---|
1 | MEYER Cameron | 70 |
2 | HAMILTON Lucas | 71 |
3 | CULEY Marcus | 69 |
4 | DURBRIDGE Luke | 78 |
5 | MCCARTHY Jay | 63 |
6 | HAAS Nathan | 71 |
7 | HARPER Chris | 67 |
8 | HEPBURN Michael | 77 |
10 | POWER Robert | 68 |
11 | HUCKER Robbie | 68 |
13 | CARMAN Ben | 66 |
16 | SCHULTZ Nick | 68 |
19 | FREIBERG Michael | 82 |
21 | HINDLEY Jai | 60 |
23 | SUNDERLAND Dylan | 67 |
24 | JENNER Samuel | 64 |
25 | OVETT Freddy | 64 |
29 | DONOHOE Alistair | 62 |
31 | VINE Jay | 69 |
33 | VOLKERS Samuel | 67 |
34 | VON HOFF Steele | 70 |