Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 35
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Brändle
1
80 kgRitzinger
2
80 kgGamper
4
80 kgKepplinger
5
70 kgAuer
8
73 kgZoidl
9
63 kgSalzmann
10
72 kgGraf
11
72 kgFriedrich
12
71 kgGall
13
66 kgBosch
14
76 kgStari
15
73 kgHammerschmid
17
62 kgUmhaller
20
64 kgOchsenhofer
23
88 kgHopfgartner
24
63 kgRossi
25
70 kg
1
80 kgRitzinger
2
80 kgGamper
4
80 kgKepplinger
5
70 kgAuer
8
73 kgZoidl
9
63 kgSalzmann
10
72 kgGraf
11
72 kgFriedrich
12
71 kgGall
13
66 kgBosch
14
76 kgStari
15
73 kgHammerschmid
17
62 kgUmhaller
20
64 kgOchsenhofer
23
88 kgHopfgartner
24
63 kgRossi
25
70 kg
Weight (KG) →
Result →
88
62
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | BRÄNDLE Matthias | 80 |
2 | RITZINGER Felix | 80 |
4 | GAMPER Patrick | 80 |
5 | KEPPLINGER Rainer | 70 |
8 | AUER Daniel | 73 |
9 | ZOIDL Riccardo | 63 |
10 | SALZMANN Jodok | 72 |
11 | GRAF Andreas | 72 |
12 | FRIEDRICH Marco | 71 |
13 | GALL Felix | 66 |
14 | BOSCH Manuel | 76 |
15 | STARI Linus | 73 |
17 | HAMMERSCHMID Marvin | 62 |
20 | UMHALLER Thomas | 64 |
23 | OCHSENHOFER Peter | 88 |
24 | HOPFGARTNER Paul | 63 |
25 | ROSSI Rene | 70 |