Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 85
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Brändle
1
80 kgMühlberger
2
64 kgGogl
3
71 kgHaller
4
72 kgRabitsch
6
69 kgSchlemmer
8
64 kgKrizek
10
74 kgPreidler
11
68 kgKonrad
14
64 kgGamper
15
80 kgAuer
22
73 kgDenifl
28
65 kgSchönberger
34
64 kgLehner
35
63 kgBrkic
36
58 kgWachter
39
72 kgPöll
41
60 kgBenetseder
42
65 kgZeller
43
72 kgZoidl
45
63 kgEisel
46
74 kgPöstlberger
47
70 kg
1
80 kgMühlberger
2
64 kgGogl
3
71 kgHaller
4
72 kgRabitsch
6
69 kgSchlemmer
8
64 kgKrizek
10
74 kgPreidler
11
68 kgKonrad
14
64 kgGamper
15
80 kgAuer
22
73 kgDenifl
28
65 kgSchönberger
34
64 kgLehner
35
63 kgBrkic
36
58 kgWachter
39
72 kgPöll
41
60 kgBenetseder
42
65 kgZeller
43
72 kgZoidl
45
63 kgEisel
46
74 kgPöstlberger
47
70 kg
Weight (KG) →
Result →
80
58
1
47
# | Rider | Weight (KG) |
---|---|---|
1 | BRÄNDLE Matthias | 80 |
2 | MÜHLBERGER Gregor | 64 |
3 | GOGL Michael | 71 |
4 | HALLER Marco | 72 |
6 | RABITSCH Stephan | 69 |
8 | SCHLEMMER Lukas | 64 |
10 | KRIZEK Matthias | 74 |
11 | PREIDLER Georg | 68 |
14 | KONRAD Patrick | 64 |
15 | GAMPER Patrick | 80 |
22 | AUER Daniel | 73 |
28 | DENIFL Stefan | 65 |
34 | SCHÖNBERGER Sebastian | 64 |
35 | LEHNER Daniel | 63 |
36 | BRKIC Benjamin | 58 |
39 | WACHTER Alexander | 72 |
41 | PÖLL Stefan | 60 |
42 | BENETSEDER Josef | 65 |
43 | ZELLER Lukas | 72 |
45 | ZOIDL Riccardo | 63 |
46 | EISEL Bernhard | 74 |
47 | PÖSTLBERGER Lukas | 70 |