Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 36
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Wauters
1
73 kgRoesems
2
81 kgVandenbroucke
3
67 kgVan Petegem
4
70 kgVan den Broeck
5
69 kgVan Impe
6
75 kgOmloop
7
78 kgKaisen
8
82 kgDe Neef
9
75 kgSijmens
10
69 kgDe Vocht
11
78 kgThijs
12
69 kgScheirlinckx
14
67 kgStubbe
15
66 kgDe Schrooder
16
61 kgWynants
19
74 kgIsta
21
70 kg
1
73 kgRoesems
2
81 kgVandenbroucke
3
67 kgVan Petegem
4
70 kgVan den Broeck
5
69 kgVan Impe
6
75 kgOmloop
7
78 kgKaisen
8
82 kgDe Neef
9
75 kgSijmens
10
69 kgDe Vocht
11
78 kgThijs
12
69 kgScheirlinckx
14
67 kgStubbe
15
66 kgDe Schrooder
16
61 kgWynants
19
74 kgIsta
21
70 kg
Weight (KG) →
Result →
82
61
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | WAUTERS Marc | 73 |
2 | ROESEMS Bert | 81 |
3 | VANDENBROUCKE Frank | 67 |
4 | VAN PETEGEM Peter | 70 |
5 | VAN DEN BROECK Jurgen | 69 |
6 | VAN IMPE Kevin | 75 |
7 | OMLOOP Geert | 78 |
8 | KAISEN Olivier | 82 |
9 | DE NEEF Steven | 75 |
10 | SIJMENS Nico | 69 |
11 | DE VOCHT Wim | 78 |
12 | THIJS Erwin | 69 |
14 | SCHEIRLINCKX Bert | 67 |
15 | STUBBE Tom | 66 |
16 | DE SCHROODER Benny | 61 |
19 | WYNANTS Maarten | 74 |
21 | ISTA Kevyn | 70 |