Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 51
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Devolder
1
72 kgHoste
2
80 kgCornu
3
78 kgVandewalle
4
74 kgRoesems
5
81 kgGilbert
6
75 kgKaisen
7
82 kgVanheule
8
76 kgDe Weert
9
70 kgWynants
10
74 kgGoddaert
11
72 kgCoenen
12
67 kgNeyens
13
74 kgRosseler
14
78 kgVan Huffel
15
66 kgDe Neef
16
75 kgVeuchelen
17
75 kgDe Schrooder
18
61 kgVanspeybrouck
19
76 kgStubbe
20
66 kg
1
72 kgHoste
2
80 kgCornu
3
78 kgVandewalle
4
74 kgRoesems
5
81 kgGilbert
6
75 kgKaisen
7
82 kgVanheule
8
76 kgDe Weert
9
70 kgWynants
10
74 kgGoddaert
11
72 kgCoenen
12
67 kgNeyens
13
74 kgRosseler
14
78 kgVan Huffel
15
66 kgDe Neef
16
75 kgVeuchelen
17
75 kgDe Schrooder
18
61 kgVanspeybrouck
19
76 kgStubbe
20
66 kg
Weight (KG) →
Result →
82
61
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | DEVOLDER Stijn | 72 |
2 | HOSTE Leif | 80 |
3 | CORNU Dominique | 78 |
4 | VANDEWALLE Kristof | 74 |
5 | ROESEMS Bert | 81 |
6 | GILBERT Philippe | 75 |
7 | KAISEN Olivier | 82 |
8 | VANHEULE Bart | 76 |
9 | DE WEERT Kevin | 70 |
10 | WYNANTS Maarten | 74 |
11 | GODDAERT Kristof | 72 |
12 | COENEN Johan | 67 |
13 | NEYENS Maarten | 74 |
14 | ROSSELER Sébastien | 78 |
15 | VAN HUFFEL Wim | 66 |
16 | DE NEEF Steven | 75 |
17 | VEUCHELEN Frederik | 75 |
18 | DE SCHROODER Benny | 61 |
19 | VANSPEYBROUCK Pieter | 76 |
20 | STUBBE Tom | 66 |