Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 8
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Gilbert
1
75 kgHermans
2
72 kgCornu
3
78 kgGhyselinck
4
74 kgDe Gendt
5
73 kgWallays
6
77 kgKaisen
7
82 kgVermote
8
74 kgVan Goolen
9
70 kgMonfort
10
66 kgVandewalle
11
74 kgDevolder
12
72 kgGoris
14
87 kgDufrasne
15
70 kgCappelle
16
76 kgDe Neef
17
75 kgVan Impe
18
75 kgde Wilde
19
74 kg
1
75 kgHermans
2
72 kgCornu
3
78 kgGhyselinck
4
74 kgDe Gendt
5
73 kgWallays
6
77 kgKaisen
7
82 kgVermote
8
74 kgVan Goolen
9
70 kgMonfort
10
66 kgVandewalle
11
74 kgDevolder
12
72 kgGoris
14
87 kgDufrasne
15
70 kgCappelle
16
76 kgDe Neef
17
75 kgVan Impe
18
75 kgde Wilde
19
74 kg
Weight (KG) →
Result →
87
66
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | GILBERT Philippe | 75 |
2 | HERMANS Ben | 72 |
3 | CORNU Dominique | 78 |
4 | GHYSELINCK Jan | 74 |
5 | DE GENDT Thomas | 73 |
6 | WALLAYS Jelle | 77 |
7 | KAISEN Olivier | 82 |
8 | VERMOTE Julien | 74 |
9 | VAN GOOLEN Jurgen | 70 |
10 | MONFORT Maxime | 66 |
11 | VANDEWALLE Kristof | 74 |
12 | DEVOLDER Stijn | 72 |
14 | GORIS Rob | 87 |
15 | DUFRASNE Jonathan | 70 |
16 | CAPPELLE Dieter | 76 |
17 | DE NEEF Steven | 75 |
18 | VAN IMPE Kevin | 75 |
19 | DE WILDE Sjef | 74 |