Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 4
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Vandewalle
1
74 kgHermans
2
72 kgGilbert
3
75 kgDe Gendt
4
73 kgBille
5
67 kgMonfort
6
66 kgDe Jonghe
7
69 kgGhyselinck
8
74 kgWallays
9
77 kgVermote
10
74 kgKaisen
11
82 kgVanoverberghe
12
65 kgWellens
13
71 kgJacobs
14
68 kgCornu
15
78 kgVan Keirsbulck
16
89 kgBreyne
18
83 kgDufrasne
19
70 kgRosseler
20
78 kgDernies
21
68 kgEvrard
22
65 kg
1
74 kgHermans
2
72 kgGilbert
3
75 kgDe Gendt
4
73 kgBille
5
67 kgMonfort
6
66 kgDe Jonghe
7
69 kgGhyselinck
8
74 kgWallays
9
77 kgVermote
10
74 kgKaisen
11
82 kgVanoverberghe
12
65 kgWellens
13
71 kgJacobs
14
68 kgCornu
15
78 kgVan Keirsbulck
16
89 kgBreyne
18
83 kgDufrasne
19
70 kgRosseler
20
78 kgDernies
21
68 kgEvrard
22
65 kg
Weight (KG) →
Result →
89
65
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | VANDEWALLE Kristof | 74 |
2 | HERMANS Ben | 72 |
3 | GILBERT Philippe | 75 |
4 | DE GENDT Thomas | 73 |
5 | BILLE Gaëtan | 67 |
6 | MONFORT Maxime | 66 |
7 | DE JONGHE Kevin | 69 |
8 | GHYSELINCK Jan | 74 |
9 | WALLAYS Jelle | 77 |
10 | VERMOTE Julien | 74 |
11 | KAISEN Olivier | 82 |
12 | VANOVERBERGHE Arthur | 65 |
13 | WELLENS Tim | 71 |
14 | JACOBS Pieter | 68 |
15 | CORNU Dominique | 78 |
16 | VAN KEIRSBULCK Guillaume | 89 |
18 | BREYNE Jonathan | 83 |
19 | DUFRASNE Jonathan | 70 |
20 | ROSSELER Sébastien | 78 |
21 | DERNIES Tom | 68 |
22 | EVRARD Laurent | 65 |