Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 18
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Vandewalle
1
74 kgGilbert
2
75 kgVermote
3
74 kgBakelants
4
67 kgLampaert
5
75 kgDevolder
6
72 kgVan Keirsbulck
7
89 kgDe Clercq
8
67 kgBoucher
9
78 kgSteels
10
78 kgPremont
11
69 kgVanoverberghe
12
65 kgKaisen
13
82 kgBille
14
67 kgWallays
15
77 kgVan De Walle
16
74 kgMonfort
17
66 kgDe Gendt
18
73 kg
1
74 kgGilbert
2
75 kgVermote
3
74 kgBakelants
4
67 kgLampaert
5
75 kgDevolder
6
72 kgVan Keirsbulck
7
89 kgDe Clercq
8
67 kgBoucher
9
78 kgSteels
10
78 kgPremont
11
69 kgVanoverberghe
12
65 kgKaisen
13
82 kgBille
14
67 kgWallays
15
77 kgVan De Walle
16
74 kgMonfort
17
66 kgDe Gendt
18
73 kg
Weight (KG) →
Result →
89
65
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | VANDEWALLE Kristof | 74 |
2 | GILBERT Philippe | 75 |
3 | VERMOTE Julien | 74 |
4 | BAKELANTS Jan | 67 |
5 | LAMPAERT Yves | 75 |
6 | DEVOLDER Stijn | 72 |
7 | VAN KEIRSBULCK Guillaume | 89 |
8 | DE CLERCQ Bart | 67 |
9 | BOUCHER David | 78 |
10 | STEELS Stijn | 78 |
11 | PREMONT Christophe | 69 |
12 | VANOVERBERGHE Arthur | 65 |
13 | KAISEN Olivier | 82 |
14 | BILLE Gaëtan | 67 |
15 | WALLAYS Jelle | 77 |
16 | VAN DE WALLE Jurgen | 74 |
17 | MONFORT Maxime | 66 |
18 | DE GENDT Thomas | 73 |