Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 1
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Van den Broeck
1
69 kgLampaert
2
75 kgVandewalle
3
74 kgDevolder
4
72 kgCampenaerts
5
68 kgSerry
6
66 kgBoucher
7
78 kgVan Keirsbulck
8
89 kgDe Bie
9
65 kgGhyselinck
10
74 kgBoonen
11
82 kgDe Gendt
12
73 kgDe Greef
13
77 kgDe Troyer
14
72 kgVermote
15
74 kgPeeters
16
75 kgWellens
17
71 kgSteels
18
78 kgVansummeren
19
79 kgVallée
20
79 kgEvrard
21
65 kg
1
69 kgLampaert
2
75 kgVandewalle
3
74 kgDevolder
4
72 kgCampenaerts
5
68 kgSerry
6
66 kgBoucher
7
78 kgVan Keirsbulck
8
89 kgDe Bie
9
65 kgGhyselinck
10
74 kgBoonen
11
82 kgDe Gendt
12
73 kgDe Greef
13
77 kgDe Troyer
14
72 kgVermote
15
74 kgPeeters
16
75 kgWellens
17
71 kgSteels
18
78 kgVansummeren
19
79 kgVallée
20
79 kgEvrard
21
65 kg
Weight (KG) →
Result →
89
65
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | VAN DEN BROECK Jurgen | 69 |
2 | LAMPAERT Yves | 75 |
3 | VANDEWALLE Kristof | 74 |
4 | DEVOLDER Stijn | 72 |
5 | CAMPENAERTS Victor | 68 |
6 | SERRY Pieter | 66 |
7 | BOUCHER David | 78 |
8 | VAN KEIRSBULCK Guillaume | 89 |
9 | DE BIE Sean | 65 |
10 | GHYSELINCK Jan | 74 |
11 | BOONEN Tom | 82 |
12 | DE GENDT Thomas | 73 |
13 | DE GREEF Francis | 77 |
14 | DE TROYER Tim | 72 |
15 | VERMOTE Julien | 74 |
16 | PEETERS Rob | 75 |
17 | WELLENS Tim | 71 |
18 | STEELS Stijn | 78 |
19 | VANSUMMEREN Johan | 79 |
20 | VALLÉE Boris | 79 |
21 | EVRARD Laurent | 65 |