Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 4
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Campenaerts
1
68 kgLampaert
2
75 kgHermans
3
72 kgDe Gendt
4
73 kgVanmarcke
5
77 kgDe Bie
6
65 kgDe Plus
7
67 kgFrison
8
84 kgVermote
9
74 kgBille
10
67 kgGilbert
11
75 kgDron
12
72 kgVan Keirsbulck
13
89 kgArmée
14
72 kgVan Zummeren
15
73 kgCalleeuw
16
71 kgWallays
17
64 kgDufrasne
19
70 kgWarnier
20
71 kgPeeters
21
75 kgVeuchelen
22
75 kgVerraes
23
73 kgRickaert
24
88 kg
1
68 kgLampaert
2
75 kgHermans
3
72 kgDe Gendt
4
73 kgVanmarcke
5
77 kgDe Bie
6
65 kgDe Plus
7
67 kgFrison
8
84 kgVermote
9
74 kgBille
10
67 kgGilbert
11
75 kgDron
12
72 kgVan Keirsbulck
13
89 kgArmée
14
72 kgVan Zummeren
15
73 kgCalleeuw
16
71 kgWallays
17
64 kgDufrasne
19
70 kgWarnier
20
71 kgPeeters
21
75 kgVeuchelen
22
75 kgVerraes
23
73 kgRickaert
24
88 kg
Weight (KG) →
Result →
89
64
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | CAMPENAERTS Victor | 68 |
2 | LAMPAERT Yves | 75 |
3 | HERMANS Ben | 72 |
4 | DE GENDT Thomas | 73 |
5 | VANMARCKE Sep | 77 |
6 | DE BIE Sean | 65 |
7 | DE PLUS Laurens | 67 |
8 | FRISON Frederik | 84 |
9 | VERMOTE Julien | 74 |
10 | BILLE Gaëtan | 67 |
11 | GILBERT Philippe | 75 |
12 | DRON Boris | 72 |
13 | VAN KEIRSBULCK Guillaume | 89 |
14 | ARMÉE Sander | 72 |
15 | VAN ZUMMEREN Stef | 73 |
16 | CALLEEUW Joeri | 71 |
17 | WALLAYS Jens | 64 |
19 | DUFRASNE Jonathan | 70 |
20 | WARNIER Antoine | 71 |
21 | PEETERS Rob | 75 |
22 | VEUCHELEN Frederik | 75 |
23 | VERRAES Benjamin | 73 |
24 | RICKAERT Jonas | 88 |