Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 24
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
van Aert
1
78 kgLampaert
2
75 kgEvenepoel
3
61 kgCampenaerts
4
68 kgFrison
5
84 kgDe Gendt
6
73 kgWellens
7
71 kgJanssens
8
74 kgVan Hooydonck
9
78 kgRickaert
10
88 kgLeysen
11
78 kgVermote
12
74 kgDewulf
13
74 kgVan Keirsbulck
14
89 kgAerts
15
72 kgSeye
16
77 kgDevolder
17
72 kgVerwilst
18
68 kgMarchand
19
61 kgDegand
20
63 kgGhys
21
72 kgBoucher
22
78 kgDevriendt
23
70 kg
1
78 kgLampaert
2
75 kgEvenepoel
3
61 kgCampenaerts
4
68 kgFrison
5
84 kgDe Gendt
6
73 kgWellens
7
71 kgJanssens
8
74 kgVan Hooydonck
9
78 kgRickaert
10
88 kgLeysen
11
78 kgVermote
12
74 kgDewulf
13
74 kgVan Keirsbulck
14
89 kgAerts
15
72 kgSeye
16
77 kgDevolder
17
72 kgVerwilst
18
68 kgMarchand
19
61 kgDegand
20
63 kgGhys
21
72 kgBoucher
22
78 kgDevriendt
23
70 kg
Weight (KG) →
Result →
89
61
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | VAN AERT Wout | 78 |
2 | LAMPAERT Yves | 75 |
3 | EVENEPOEL Remco | 61 |
4 | CAMPENAERTS Victor | 68 |
5 | FRISON Frederik | 84 |
6 | DE GENDT Thomas | 73 |
7 | WELLENS Tim | 71 |
8 | JANSSENS Jimmy | 74 |
9 | VAN HOOYDONCK Nathan | 78 |
10 | RICKAERT Jonas | 88 |
11 | LEYSEN Senne | 78 |
12 | VERMOTE Julien | 74 |
13 | DEWULF Stan | 74 |
14 | VAN KEIRSBULCK Guillaume | 89 |
15 | AERTS Toon | 72 |
16 | SEYE Guillaume | 77 |
17 | DEVOLDER Stijn | 72 |
18 | VERWILST Aaron | 68 |
19 | MARCHAND Gianni | 61 |
20 | DEGAND Thomas | 63 |
21 | GHYS Robbe | 72 |
22 | BOUCHER David | 78 |
23 | DEVRIENDT Tom | 70 |