Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 7
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Lampaert
1
75 kgEvenepoel
2
61 kgCampenaerts
3
68 kgVan Wilder
4
64 kgVermeersch
5
81 kgVan Hooydonck
6
78 kgFrison
7
84 kgVan Moer
8
79 kgDewulf
9
74 kgDe Wilde
10
75 kgJanssens
11
74 kgLeysen
12
78 kgDe Plus
13
69 kgCras
14
65 kgGrignard
15
68 kgHerregodts
16
70 kgMarchand
17
61 kgVan den Bossche
18
63 kgApers
19
70 kgReynders
20
76 kgRickaert
21
88 kgColman
22
73 kgVerdijck
23
79 kg
1
75 kgEvenepoel
2
61 kgCampenaerts
3
68 kgVan Wilder
4
64 kgVermeersch
5
81 kgVan Hooydonck
6
78 kgFrison
7
84 kgVan Moer
8
79 kgDewulf
9
74 kgDe Wilde
10
75 kgJanssens
11
74 kgLeysen
12
78 kgDe Plus
13
69 kgCras
14
65 kgGrignard
15
68 kgHerregodts
16
70 kgMarchand
17
61 kgVan den Bossche
18
63 kgApers
19
70 kgReynders
20
76 kgRickaert
21
88 kgColman
22
73 kgVerdijck
23
79 kg
Weight (KG) →
Result →
88
61
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | LAMPAERT Yves | 75 |
2 | EVENEPOEL Remco | 61 |
3 | CAMPENAERTS Victor | 68 |
4 | VAN WILDER Ilan | 64 |
5 | VERMEERSCH Florian | 81 |
6 | VAN HOOYDONCK Nathan | 78 |
7 | FRISON Frederik | 84 |
8 | VAN MOER Brent | 79 |
9 | DEWULF Stan | 74 |
10 | DE WILDE Gilles | 75 |
11 | JANSSENS Jimmy | 74 |
12 | LEYSEN Senne | 78 |
13 | DE PLUS Jasper | 69 |
14 | CRAS Steff | 65 |
15 | GRIGNARD Sébastien | 68 |
16 | HERREGODTS Rune | 70 |
17 | MARCHAND Gianni | 61 |
18 | VAN DEN BOSSCHE Fabio | 63 |
19 | APERS Ruben | 70 |
20 | REYNDERS Jens | 76 |
21 | RICKAERT Jonas | 88 |
22 | COLMAN Alex | 73 |
23 | VERDIJCK Niels | 79 |