Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 8
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Evenepoel
1
61 kgLampaert
2
75 kgCampenaerts
3
68 kgHerregodts
4
70 kgFrison
5
84 kgVermeersch
6
81 kgDevenyns
7
65 kgMeurisse
8
71 kgBakelants
9
67 kgDe Gendt
10
75 kgGrignard
11
68 kgApers
12
70 kgBerckmoes
13
61 kgDe Plus
14
67 kgUijtdebroeks
15
68 kgMarchand
16
61 kgDe Gendt
17
73 kgDemeyere
18
78 kgVanoverschelde
19
80 kg
1
61 kgLampaert
2
75 kgCampenaerts
3
68 kgHerregodts
4
70 kgFrison
5
84 kgVermeersch
6
81 kgDevenyns
7
65 kgMeurisse
8
71 kgBakelants
9
67 kgDe Gendt
10
75 kgGrignard
11
68 kgApers
12
70 kgBerckmoes
13
61 kgDe Plus
14
67 kgUijtdebroeks
15
68 kgMarchand
16
61 kgDe Gendt
17
73 kgDemeyere
18
78 kgVanoverschelde
19
80 kg
Weight (KG) →
Result →
84
61
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | EVENEPOEL Remco | 61 |
2 | LAMPAERT Yves | 75 |
3 | CAMPENAERTS Victor | 68 |
4 | HERREGODTS Rune | 70 |
5 | FRISON Frederik | 84 |
6 | VERMEERSCH Florian | 81 |
7 | DEVENYNS Dries | 65 |
8 | MEURISSE Xandro | 71 |
9 | BAKELANTS Jan | 67 |
10 | DE GENDT Aimé | 75 |
11 | GRIGNARD Sébastien | 68 |
12 | APERS Ruben | 70 |
13 | BERCKMOES Jenno | 61 |
14 | DE PLUS Laurens | 67 |
15 | UIJTDEBROEKS Cian | 68 |
16 | MARCHAND Gianni | 61 |
17 | DE GENDT Thomas | 73 |
18 | DEMEYERE Torsten | 78 |
19 | VANOVERSCHELDE Kobe | 80 |