Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 22
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Wellens
1
71 kgSegaert
2
79 kgHerregodts
3
70 kgVandenbranden
4
74 kgDe Pestel
5
74 kgVan Hemelen
6
71 kgVanhoof
7
75 kgVan Eetvelt
8
63 kgBerckmoes
9
61 kgVan Moer
10
79 kgVercouillie
11
66 kgCraps
12
67 kgClaeys
13
72 kgVan Hoecke
14
78 kgDeweirdt
15
69 kgBraet
16
68 kgStockman
17
67 kgVan de Wynkele
18
75 kg
1
71 kgSegaert
2
79 kgHerregodts
3
70 kgVandenbranden
4
74 kgDe Pestel
5
74 kgVan Hemelen
6
71 kgVanhoof
7
75 kgVan Eetvelt
8
63 kgBerckmoes
9
61 kgVan Moer
10
79 kgVercouillie
11
66 kgCraps
12
67 kgClaeys
13
72 kgVan Hoecke
14
78 kgDeweirdt
15
69 kgBraet
16
68 kgStockman
17
67 kgVan de Wynkele
18
75 kg
Weight (KG) →
Result →
79
61
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | WELLENS Tim | 71 |
2 | SEGAERT Alec | 79 |
3 | HERREGODTS Rune | 70 |
4 | VANDENBRANDEN Noah | 74 |
5 | DE PESTEL Sander | 74 |
6 | VAN HEMELEN Vincent | 71 |
7 | VANHOOF Ward | 75 |
8 | VAN EETVELT Lennert | 63 |
9 | BERCKMOES Jenno | 61 |
10 | VAN MOER Brent | 79 |
11 | VERCOUILLIE Victor | 66 |
12 | CRAPS Lars | 67 |
13 | CLAEYS Arno | 72 |
14 | VAN HOECKE Gijs | 78 |
15 | DEWEIRDT Siebe | 69 |
16 | BRAET Vito | 68 |
17 | STOCKMAN Abram | 67 |
18 | VAN DE WYNKELE Lorenz | 75 |