Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 40
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Cappelle
2
76 kgPauwels
4
65 kgDevenyns
9
65 kgDe Backer
10
73 kgVan den Broeck
24
69 kgGrosdent
27
74 kgSchets
28
74 kgDehaes
31
73 kgSuray
33
67 kgGilbert
50
60 kgIsta
52
70 kgMonfort
53
66 kgSchmets
61
85 kgKaisen
75
82 kgVerbist
80
73 kgPauwels
99
60 kgDe Poortere
102
70 kgWeylandt
110
72 kg
2
76 kgPauwels
4
65 kgDevenyns
9
65 kgDe Backer
10
73 kgVan den Broeck
24
69 kgGrosdent
27
74 kgSchets
28
74 kgDehaes
31
73 kgSuray
33
67 kgGilbert
50
60 kgIsta
52
70 kgMonfort
53
66 kgSchmets
61
85 kgKaisen
75
82 kgVerbist
80
73 kgPauwels
99
60 kgDe Poortere
102
70 kgWeylandt
110
72 kg
Weight (KG) →
Result →
85
60
2
110
# | Rider | Weight (KG) |
---|---|---|
2 | CAPPELLE Dieter | 76 |
4 | PAUWELS Serge | 65 |
9 | DEVENYNS Dries | 65 |
10 | DE BACKER Bert | 73 |
24 | VAN DEN BROECK Jurgen | 69 |
27 | GROSDENT William | 74 |
28 | SCHETS Steve | 74 |
31 | DEHAES Kenny | 73 |
33 | SURAY Gil | 67 |
50 | GILBERT Jérôme | 60 |
52 | ISTA Kevyn | 70 |
53 | MONFORT Maxime | 66 |
61 | SCHMETS David | 85 |
75 | KAISEN Olivier | 82 |
80 | VERBIST Evert | 73 |
99 | PAUWELS Kevin | 60 |
102 | DE POORTERE Ingmar | 70 |
110 | WEYLANDT Wouter | 72 |