Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight + 10
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Teuns
4
64 kgWellens
5
71 kgBreyne
7
83 kgStuyven
9
78 kgWaeytens
10
67 kgStallaert
12
72 kgVan Hoecke
14
78 kgLampaert
20
75 kgTheuns
26
72 kgDe Rooze
39
62 kgGoderis
42
63 kgVan Lerberghe
43
83 kgVan Keirsbulck
48
89 kgDruyts
54
69 kgDe Bie
66
65 kgVan Meirhaeghe
68
71 kgCoenen
84
69 kgVandenbogaerde
85
77 kgSegers
91
78 kgFrison
96
84 kgCasier
101
71 kg
4
64 kgWellens
5
71 kgBreyne
7
83 kgStuyven
9
78 kgWaeytens
10
67 kgStallaert
12
72 kgVan Hoecke
14
78 kgLampaert
20
75 kgTheuns
26
72 kgDe Rooze
39
62 kgGoderis
42
63 kgVan Lerberghe
43
83 kgVan Keirsbulck
48
89 kgDruyts
54
69 kgDe Bie
66
65 kgVan Meirhaeghe
68
71 kgCoenen
84
69 kgVandenbogaerde
85
77 kgSegers
91
78 kgFrison
96
84 kgCasier
101
71 kg
Weight (KG) →
Result →
89
62
4
101
# | Rider | Weight (KG) |
---|---|---|
4 | TEUNS Dylan | 64 |
5 | WELLENS Tim | 71 |
7 | BREYNE Jonathan | 83 |
9 | STUYVEN Jasper | 78 |
10 | WAEYTENS Zico | 67 |
12 | STALLAERT Joeri | 72 |
14 | VAN HOECKE Gijs | 78 |
20 | LAMPAERT Yves | 75 |
26 | THEUNS Edward | 72 |
39 | DE ROOZE Niels | 62 |
42 | GODERIS Jelle | 63 |
43 | VAN LERBERGHE Bert | 83 |
48 | VAN KEIRSBULCK Guillaume | 89 |
54 | DRUYTS Gerry | 69 |
66 | DE BIE Sean | 65 |
68 | VAN MEIRHAEGHE Jef | 71 |
84 | COENEN Dennis | 69 |
85 | VANDENBOGAERDE Jens | 77 |
91 | SEGERS Joren | 78 |
96 | FRISON Frederik | 84 |
101 | CASIER Arne | 71 |