Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1 * weight - 11
This means that on average for every extra kilogram weight a rider loses 1 positions in the result.
Widar
4
54 kgVan Mechelen
6
73 kgDockx
8
56 kgSentjens
10
85 kgBolle
20
62 kgDe Clerck
21
64 kgDockx
29
61 kgVerbrugghe
36
64 kgDe Vos
41
78 kgVan den Branden
47
78 kgGraff
58
68 kgVandenabeele
66
64 kgVanhaecke
76
65 kgVerhagen
82
67 kgDe Meijts
89
71 kgCrabbe
90
70 kgDe Moyer
93
69 kgHeymans
98
63 kgVan Cleemputte
104
73 kgDe Ceuster
109
76 kgSluyts
114
67 kg
4
54 kgVan Mechelen
6
73 kgDockx
8
56 kgSentjens
10
85 kgBolle
20
62 kgDe Clerck
21
64 kgDockx
29
61 kgVerbrugghe
36
64 kgDe Vos
41
78 kgVan den Branden
47
78 kgGraff
58
68 kgVandenabeele
66
64 kgVanhaecke
76
65 kgVerhagen
82
67 kgDe Meijts
89
71 kgCrabbe
90
70 kgDe Moyer
93
69 kgHeymans
98
63 kgVan Cleemputte
104
73 kgDe Ceuster
109
76 kgSluyts
114
67 kg
Weight (KG) →
Result →
85
54
4
114
# | Rider | Weight (KG) |
---|---|---|
4 | WIDAR Jarno | 54 |
6 | VAN MECHELEN Vlad | 73 |
8 | DOCKX Aaron | 56 |
10 | SENTJENS Sente | 85 |
20 | BOLLE Bert | 62 |
21 | DE CLERCK Niels | 64 |
29 | DOCKX Gilles | 61 |
36 | VERBRUGGHE Jens | 64 |
41 | DE VOS Seppe | 78 |
47 | VAN DEN BRANDEN Rune | 78 |
58 | GRAFF William | 68 |
66 | VANDENABEELE Kobe | 64 |
76 | VANHAECKE Arno | 65 |
82 | VERHAGEN Xander | 67 |
89 | DE MEIJTS Matis | 71 |
90 | CRABBE Tom | 70 |
93 | DE MOYER Kenay | 69 |
98 | HEYMANS Yarno | 63 |
104 | VAN CLEEMPUTTE Kenji | 73 |
109 | DE CEUSTER Milan | 76 |
114 | SLUYTS Ward | 67 |