Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 124
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
Widar
1
54 kgSentjens
4
85 kgDe Schuyteneer
8
74 kgCrabbe
10
70 kgDe Vos
11
78 kgScheldeman
12
66 kgDockx
29
61 kgVandevorst
31
74 kgMarivoet
39
59 kgDe Neve
47
58 kgBoussemaere
49
56 kgVan den Broek
50
69 kgDebeaussaert
59
63 kgHeymans
68
63 kgVerstraete
69
59 kgAernouts
81
55 kgVandenabeele
88
64 kgSchoofs
94
68 kgGeerinck
109
67 kgDe Bock
110
70 kg
1
54 kgSentjens
4
85 kgDe Schuyteneer
8
74 kgCrabbe
10
70 kgDe Vos
11
78 kgScheldeman
12
66 kgDockx
29
61 kgVandevorst
31
74 kgMarivoet
39
59 kgDe Neve
47
58 kgBoussemaere
49
56 kgVan den Broek
50
69 kgDebeaussaert
59
63 kgHeymans
68
63 kgVerstraete
69
59 kgAernouts
81
55 kgVandenabeele
88
64 kgSchoofs
94
68 kgGeerinck
109
67 kgDe Bock
110
70 kg
Weight (KG) →
Result →
85
54
1
110
# | Rider | Weight (KG) |
---|---|---|
1 | WIDAR Jarno | 54 |
4 | SENTJENS Sente | 85 |
8 | DE SCHUYTENEER Steffen | 74 |
10 | CRABBE Tom | 70 |
11 | DE VOS Seppe | 78 |
12 | SCHELDEMAN Xander | 66 |
29 | DOCKX Gilles | 61 |
31 | VANDEVORST Nio | 74 |
39 | MARIVOET Duarte | 59 |
47 | DE NEVE Hannes | 58 |
49 | BOUSSEMAERE Louic | 56 |
50 | VAN DEN BROEK Axel | 69 |
59 | DEBEAUSSAERT Michiel | 63 |
68 | HEYMANS Yarno | 63 |
69 | VERSTRAETE Jenthe | 59 |
81 | AERNOUTS Nicolas | 55 |
88 | VANDENABEELE Kobe | 64 |
94 | SCHOOFS Jasper | 68 |
109 | GEERINCK Seppe | 67 |
110 | DE BOCK Aless | 70 |