Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 23
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Cornu
1
78 kgVanheule
2
76 kgDe Greef
3
77 kgVanendert
4
62 kgDevenyns
6
65 kgPeeters
7
75 kgPauwels
9
65 kgVandewalle
10
74 kgMaes
14
78 kgIngels
15
70 kgHermans
16
72 kgDe Poortere
17
70 kgRoelandts
18
78 kgVantomme
22
63 kgCappelle
24
76 kgPardini
25
68 kgDehaes
27
73 kg
1
78 kgVanheule
2
76 kgDe Greef
3
77 kgVanendert
4
62 kgDevenyns
6
65 kgPeeters
7
75 kgPauwels
9
65 kgVandewalle
10
74 kgMaes
14
78 kgIngels
15
70 kgHermans
16
72 kgDe Poortere
17
70 kgRoelandts
18
78 kgVantomme
22
63 kgCappelle
24
76 kgPardini
25
68 kgDehaes
27
73 kg
Weight (KG) →
Result →
78
62
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | CORNU Dominique | 78 |
2 | VANHEULE Bart | 76 |
3 | DE GREEF Francis | 77 |
4 | VANENDERT Jelle | 62 |
6 | DEVENYNS Dries | 65 |
7 | PEETERS Rob | 75 |
9 | PAUWELS Serge | 65 |
10 | VANDEWALLE Kristof | 74 |
14 | MAES Nikolas | 78 |
15 | INGELS Nick | 70 |
16 | HERMANS Ben | 72 |
17 | DE POORTERE Ingmar | 70 |
18 | ROELANDTS Jürgen | 78 |
22 | VANTOMME Maxime | 63 |
24 | CAPPELLE Dieter | 76 |
25 | PARDINI Olivier | 68 |
27 | DEHAES Kenny | 73 |