Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 66
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Cornu
1
78 kgGoddaert
3
72 kgvan Vooren
4
75 kgPeeters
5
75 kgVandewalle
6
74 kgRoelandts
7
78 kgDe Ketele
9
66 kgNeyens
10
74 kgDe Poortere
13
70 kgDe Greef
14
77 kgVantomme
16
63 kgPratte
17
67 kgPardini
19
68 kgNeirynck
22
78 kgDevillers
24
62 kgZingle
26
67 kgMertens
27
73 kg
1
78 kgGoddaert
3
72 kgvan Vooren
4
75 kgPeeters
5
75 kgVandewalle
6
74 kgRoelandts
7
78 kgDe Ketele
9
66 kgNeyens
10
74 kgDe Poortere
13
70 kgDe Greef
14
77 kgVantomme
16
63 kgPratte
17
67 kgPardini
19
68 kgNeirynck
22
78 kgDevillers
24
62 kgZingle
26
67 kgMertens
27
73 kg
Weight (KG) →
Result →
78
62
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | CORNU Dominique | 78 |
3 | GODDAERT Kristof | 72 |
4 | VAN VOOREN Steven | 75 |
5 | PEETERS Rob | 75 |
6 | VANDEWALLE Kristof | 74 |
7 | ROELANDTS Jürgen | 78 |
9 | DE KETELE Kenny | 66 |
10 | NEYENS Maarten | 74 |
13 | DE POORTERE Ingmar | 70 |
14 | DE GREEF Francis | 77 |
16 | VANTOMME Maxime | 63 |
17 | PRATTE Philippe | 67 |
19 | PARDINI Olivier | 68 |
22 | NEIRYNCK Stijn | 78 |
24 | DEVILLERS Gilles | 62 |
26 | ZINGLE Romain | 67 |
27 | MERTENS Tim | 73 |