Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 69
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
De Greef
1
77 kgGhyselinck
2
74 kgGoddaert
3
72 kgZingle
4
67 kgRoelandts
6
78 kgVandewalle
7
74 kgNeyens
9
74 kgNeirynck
10
78 kgCordeel
12
80 kgLodewyck
14
70 kgVantomme
16
63 kgDufrasne
17
70 kgMertens
18
73 kgvan Vooren
19
75 kgPardini
20
68 kgVanoverschelde
22
80 kgDockx
23
64 kgDevillers
24
62 kgArmée
25
72 kgDe Gendt
26
73 kgTerweduwe
30
67 kgBille
32
67 kg
1
77 kgGhyselinck
2
74 kgGoddaert
3
72 kgZingle
4
67 kgRoelandts
6
78 kgVandewalle
7
74 kgNeyens
9
74 kgNeirynck
10
78 kgCordeel
12
80 kgLodewyck
14
70 kgVantomme
16
63 kgDufrasne
17
70 kgMertens
18
73 kgvan Vooren
19
75 kgPardini
20
68 kgVanoverschelde
22
80 kgDockx
23
64 kgDevillers
24
62 kgArmée
25
72 kgDe Gendt
26
73 kgTerweduwe
30
67 kgBille
32
67 kg
Weight (KG) →
Result →
80
62
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | DE GREEF Francis | 77 |
2 | GHYSELINCK Jan | 74 |
3 | GODDAERT Kristof | 72 |
4 | ZINGLE Romain | 67 |
6 | ROELANDTS Jürgen | 78 |
7 | VANDEWALLE Kristof | 74 |
9 | NEYENS Maarten | 74 |
10 | NEIRYNCK Stijn | 78 |
12 | CORDEEL Sander | 80 |
14 | LODEWYCK Klaas | 70 |
16 | VANTOMME Maxime | 63 |
17 | DUFRASNE Jonathan | 70 |
18 | MERTENS Tim | 73 |
19 | VAN VOOREN Steven | 75 |
20 | PARDINI Olivier | 68 |
22 | VANOVERSCHELDE Kobe | 80 |
23 | DOCKX Gert | 64 |
24 | DEVILLERS Gilles | 62 |
25 | ARMÉE Sander | 72 |
26 | DE GENDT Thomas | 73 |
30 | TERWEDUWE Kenny | 67 |
32 | BILLE Gaëtan | 67 |