Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 30
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Ghyselinck
1
74 kgHermans
2
72 kgDufrasne
3
70 kgvan Vooren
4
75 kgZingle
7
67 kgSteels
8
78 kgLodewyck
9
70 kgCordeel
10
80 kgKeukeleire
12
69 kgDe Gendt
13
73 kgDebusschere
14
77 kgVermote
17
74 kgBille
18
67 kgWallays
20
77 kgBoeckmans
22
76 kgEijssen
23
60 kgDron
24
72 kgVerraes
28
73 kg
1
74 kgHermans
2
72 kgDufrasne
3
70 kgvan Vooren
4
75 kgZingle
7
67 kgSteels
8
78 kgLodewyck
9
70 kgCordeel
10
80 kgKeukeleire
12
69 kgDe Gendt
13
73 kgDebusschere
14
77 kgVermote
17
74 kgBille
18
67 kgWallays
20
77 kgBoeckmans
22
76 kgEijssen
23
60 kgDron
24
72 kgVerraes
28
73 kg
Weight (KG) →
Result →
80
60
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | GHYSELINCK Jan | 74 |
2 | HERMANS Ben | 72 |
3 | DUFRASNE Jonathan | 70 |
4 | VAN VOOREN Steven | 75 |
7 | ZINGLE Romain | 67 |
8 | STEELS Stijn | 78 |
9 | LODEWYCK Klaas | 70 |
10 | CORDEEL Sander | 80 |
12 | KEUKELEIRE Jens | 69 |
13 | DE GENDT Thomas | 73 |
14 | DEBUSSCHERE Jens | 77 |
17 | VERMOTE Julien | 74 |
18 | BILLE Gaëtan | 67 |
20 | WALLAYS Jelle | 77 |
22 | BOECKMANS Kris | 76 |
23 | EIJSSEN Yannick | 60 |
24 | DRON Boris | 72 |
28 | VERRAES Benjamin | 73 |