Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 9
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Vermote
1
74 kgDufrasne
2
70 kgZingle
3
67 kgGhyselinck
4
74 kgVanoverberghe
5
65 kgVerraes
6
73 kgBille
7
67 kgDebusschere
9
77 kgSteels
12
78 kgLietaer
17
70 kgEijssen
19
60 kgSleurs
21
68 kgHelven
24
74 kgCordeel
25
80 kgKeukeleire
27
69 kgDron
28
72 kgClaeys
30
77 kg
1
74 kgDufrasne
2
70 kgZingle
3
67 kgGhyselinck
4
74 kgVanoverberghe
5
65 kgVerraes
6
73 kgBille
7
67 kgDebusschere
9
77 kgSteels
12
78 kgLietaer
17
70 kgEijssen
19
60 kgSleurs
21
68 kgHelven
24
74 kgCordeel
25
80 kgKeukeleire
27
69 kgDron
28
72 kgClaeys
30
77 kg
Weight (KG) →
Result →
80
60
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | VERMOTE Julien | 74 |
2 | DUFRASNE Jonathan | 70 |
3 | ZINGLE Romain | 67 |
4 | GHYSELINCK Jan | 74 |
5 | VANOVERBERGHE Arthur | 65 |
6 | VERRAES Benjamin | 73 |
7 | BILLE Gaëtan | 67 |
9 | DEBUSSCHERE Jens | 77 |
12 | STEELS Stijn | 78 |
17 | LIETAER Eliot | 70 |
19 | EIJSSEN Yannick | 60 |
21 | SLEURS Christophe | 68 |
24 | HELVEN Sander | 74 |
25 | CORDEEL Sander | 80 |
27 | KEUKELEIRE Jens | 69 |
28 | DRON Boris | 72 |
30 | CLAEYS Dimitri | 77 |