Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 36
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Breyne
1
83 kgVan Keirsbulck
3
89 kgDron
4
72 kgVanoverberghe
5
65 kgBille
6
67 kgDe Jonghe
7
69 kgDe Bie
10
65 kgVermote
13
74 kgDebusschere
15
77 kgPremont
17
69 kgSleurs
18
68 kgWaeytens
19
67 kgVan Zummeren
20
73 kgEijssen
24
60 kgJodts
26
74 kgHelven
28
74 kgTheuns
29
72 kgVan Hoecke
30
78 kgLietaer
31
70 kg
1
83 kgVan Keirsbulck
3
89 kgDron
4
72 kgVanoverberghe
5
65 kgBille
6
67 kgDe Jonghe
7
69 kgDe Bie
10
65 kgVermote
13
74 kgDebusschere
15
77 kgPremont
17
69 kgSleurs
18
68 kgWaeytens
19
67 kgVan Zummeren
20
73 kgEijssen
24
60 kgJodts
26
74 kgHelven
28
74 kgTheuns
29
72 kgVan Hoecke
30
78 kgLietaer
31
70 kg
Weight (KG) →
Result →
89
60
1
31
# | Rider | Weight (KG) |
---|---|---|
1 | BREYNE Jonathan | 83 |
3 | VAN KEIRSBULCK Guillaume | 89 |
4 | DRON Boris | 72 |
5 | VANOVERBERGHE Arthur | 65 |
6 | BILLE Gaëtan | 67 |
7 | DE JONGHE Kevin | 69 |
10 | DE BIE Sean | 65 |
13 | VERMOTE Julien | 74 |
15 | DEBUSSCHERE Jens | 77 |
17 | PREMONT Christophe | 69 |
18 | SLEURS Christophe | 68 |
19 | WAEYTENS Zico | 67 |
20 | VAN ZUMMEREN Stef | 73 |
24 | EIJSSEN Yannick | 60 |
26 | JODTS Sven | 74 |
28 | HELVEN Sander | 74 |
29 | THEUNS Edward | 72 |
30 | VAN HOECKE Gijs | 78 |
31 | LIETAER Eliot | 70 |