Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 7
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Lampaert
1
75 kgFrison
2
84 kgVereecken
4
72 kgCampenaerts
5
68 kgVan Zummeren
7
73 kgVan Meirhaeghe
8
71 kgWallays
9
64 kgVandenbogaerde
12
77 kgSleurs
13
68 kgPeyskens
14
69 kgDemoitié
15
69 kgTheuns
17
72 kgVallée
19
79 kgTeugels
23
64 kgRaeymaekers
29
68 kgBoons
34
85 kg
1
75 kgFrison
2
84 kgVereecken
4
72 kgCampenaerts
5
68 kgVan Zummeren
7
73 kgVan Meirhaeghe
8
71 kgWallays
9
64 kgVandenbogaerde
12
77 kgSleurs
13
68 kgPeyskens
14
69 kgDemoitié
15
69 kgTheuns
17
72 kgVallée
19
79 kgTeugels
23
64 kgRaeymaekers
29
68 kgBoons
34
85 kg
Weight (KG) →
Result →
85
64
1
34
# | Rider | Weight (KG) |
---|---|---|
1 | LAMPAERT Yves | 75 |
2 | FRISON Frederik | 84 |
4 | VEREECKEN Nicolas | 72 |
5 | CAMPENAERTS Victor | 68 |
7 | VAN ZUMMEREN Stef | 73 |
8 | VAN MEIRHAEGHE Jef | 71 |
9 | WALLAYS Jens | 64 |
12 | VANDENBOGAERDE Jens | 77 |
13 | SLEURS Christophe | 68 |
14 | PEYSKENS Dimitri | 69 |
15 | DEMOITIÉ Antoine | 69 |
17 | THEUNS Edward | 72 |
19 | VALLÉE Boris | 79 |
23 | TEUGELS Lennert | 64 |
29 | RAEYMAEKERS Mattias | 68 |
34 | BOONS Ruben | 85 |