Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 10
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Campenaerts
1
68 kgFrison
2
84 kgTheuns
3
72 kgPeyskens
4
69 kgMeurisse
6
68 kgVerschuere
9
75 kgMyngheer
11
74 kgBenoot
12
72 kgVan Lerberghe
14
83 kgVandenbogaerde
15
77 kgRuyters
17
69 kgVan Meirhaeghe
19
71 kgGoolaerts
20
80 kgVallée
22
79 kgVan Zummeren
26
73 kgDe Gendt
27
75 kgVergaerde
31
74 kg
1
68 kgFrison
2
84 kgTheuns
3
72 kgPeyskens
4
69 kgMeurisse
6
68 kgVerschuere
9
75 kgMyngheer
11
74 kgBenoot
12
72 kgVan Lerberghe
14
83 kgVandenbogaerde
15
77 kgRuyters
17
69 kgVan Meirhaeghe
19
71 kgGoolaerts
20
80 kgVallée
22
79 kgVan Zummeren
26
73 kgDe Gendt
27
75 kgVergaerde
31
74 kg
Weight (KG) →
Result →
84
68
1
31
# | Rider | Weight (KG) |
---|---|---|
1 | CAMPENAERTS Victor | 68 |
2 | FRISON Frederik | 84 |
3 | THEUNS Edward | 72 |
4 | PEYSKENS Dimitri | 69 |
6 | MEURISSE Xandro | 68 |
9 | VERSCHUERE Seppe | 75 |
11 | MYNGHEER Daan | 74 |
12 | BENOOT Tiesj | 72 |
14 | VAN LERBERGHE Bert | 83 |
15 | VANDENBOGAERDE Jens | 77 |
17 | RUYTERS Brecht | 69 |
19 | VAN MEIRHAEGHE Jef | 71 |
20 | GOOLAERTS Michael | 80 |
22 | VALLÉE Boris | 79 |
26 | VAN ZUMMEREN Stef | 73 |
27 | DE GENDT Aimé | 75 |
31 | VERGAERDE Otto | 74 |