Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 2
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Van Moer
1
79 kgDe Plus
2
69 kgVan Wilder
3
64 kgVan den Bossche
5
63 kgDemeyere
6
78 kgVanhoof
7
75 kgGrignard
9
68 kgBeullens
11
79 kgVan Hemelen
12
71 kgVan Tricht
13
64 kgVervloesem
14
65 kgDe Wilde
18
75 kgDens
21
81 kgWernimont
24
80 kgSlock
26
74 kgDe Meester
27
73 kgDebloudts
29
65 kg
1
79 kgDe Plus
2
69 kgVan Wilder
3
64 kgVan den Bossche
5
63 kgDemeyere
6
78 kgVanhoof
7
75 kgGrignard
9
68 kgBeullens
11
79 kgVan Hemelen
12
71 kgVan Tricht
13
64 kgVervloesem
14
65 kgDe Wilde
18
75 kgDens
21
81 kgWernimont
24
80 kgSlock
26
74 kgDe Meester
27
73 kgDebloudts
29
65 kg
Weight (KG) →
Result →
81
63
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | VAN MOER Brent | 79 |
2 | DE PLUS Jasper | 69 |
3 | VAN WILDER Ilan | 64 |
5 | VAN DEN BOSSCHE Fabio | 63 |
6 | DEMEYERE Torsten | 78 |
7 | VANHOOF Ward | 75 |
9 | GRIGNARD Sébastien | 68 |
11 | BEULLENS Cedric | 79 |
12 | VAN HEMELEN Vincent | 71 |
13 | VAN TRICHT Stan | 64 |
14 | VERVLOESEM Xandres | 65 |
18 | DE WILDE Gilles | 75 |
21 | DENS Tuur | 81 |
24 | WERNIMONT Nicolas | 80 |
26 | SLOCK Liam | 74 |
27 | DE MEESTER Luca | 73 |
29 | DEBLOUDTS Ferre | 65 |