Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 61
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Segaert
1
79 kgVervenne
2
72 kgVan Eetvelt
3
63 kgClaeys
5
72 kgVan Hemelen
7
71 kgDe Decker
8
73 kgLootens
9
74 kgHuys
11
77 kgStockx
12
71 kgVandenbranden
13
74 kgVangheluwe
14
79 kgClynhens
16
61 kgDeweirdt
21
69 kgVerwilt
22
76 kgVandevelde
24
69 kgGelders
25
66 kgGeerinckx
26
65 kgDetalle
28
63 kg
1
79 kgVervenne
2
72 kgVan Eetvelt
3
63 kgClaeys
5
72 kgVan Hemelen
7
71 kgDe Decker
8
73 kgLootens
9
74 kgHuys
11
77 kgStockx
12
71 kgVandenbranden
13
74 kgVangheluwe
14
79 kgClynhens
16
61 kgDeweirdt
21
69 kgVerwilt
22
76 kgVandevelde
24
69 kgGelders
25
66 kgGeerinckx
26
65 kgDetalle
28
63 kg
Weight (KG) →
Result →
79
61
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | SEGAERT Alec | 79 |
2 | VERVENNE Jonathan | 72 |
3 | VAN EETVELT Lennert | 63 |
5 | CLAEYS Arno | 72 |
7 | VAN HEMELEN Vincent | 71 |
8 | DE DECKER Tijl | 73 |
9 | LOOTENS Gust | 74 |
11 | HUYS Branko | 77 |
12 | STOCKX Aaron | 71 |
13 | VANDENBRANDEN Noah | 74 |
14 | VANGHELUWE Warre | 79 |
16 | CLYNHENS Toon | 61 |
21 | DEWEIRDT Siebe | 69 |
22 | VERWILT Mauro | 76 |
24 | VANDEVELDE Yentl | 69 |
25 | GELDERS Gil | 66 |
26 | GEERINCKX Wout | 65 |
28 | DETALLE Noah | 63 |