Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 28
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Cappelle
1
71 kgLeukemans
2
67 kgDe Schrooder
5
61 kgSijmens
6
69 kgScheirlinckx
7
78 kgBrandt
9
66 kgBoonen
12
82 kgVanlandschoot
13
67 kgKleynen
14
72 kgGardeyn
16
75 kgHulsmans
17
75 kgAmorison
19
70 kgVan Huffel
20
66 kgVerstraeten
22
65 kgCommeyne
24
70 kgCoenen
26
67 kgWillems
35
67 kg
1
71 kgLeukemans
2
67 kgDe Schrooder
5
61 kgSijmens
6
69 kgScheirlinckx
7
78 kgBrandt
9
66 kgBoonen
12
82 kgVanlandschoot
13
67 kgKleynen
14
72 kgGardeyn
16
75 kgHulsmans
17
75 kgAmorison
19
70 kgVan Huffel
20
66 kgVerstraeten
22
65 kgCommeyne
24
70 kgCoenen
26
67 kgWillems
35
67 kg
Weight (KG) →
Result →
82
61
1
35
# | Rider | Weight (KG) |
---|---|---|
1 | CAPPELLE Andy | 71 |
2 | LEUKEMANS Björn | 67 |
5 | DE SCHROODER Benny | 61 |
6 | SIJMENS Nico | 69 |
7 | SCHEIRLINCKX Staf | 78 |
9 | BRANDT Christophe | 66 |
12 | BOONEN Tom | 82 |
13 | VANLANDSCHOOT James | 67 |
14 | KLEYNEN Steven | 72 |
16 | GARDEYN Gorik | 75 |
17 | HULSMANS Kevin | 75 |
19 | AMORISON Frédéric | 70 |
20 | VAN HUFFEL Wim | 66 |
22 | VERSTRAETEN Jan | 65 |
24 | COMMEYNE Davy | 70 |
26 | COENEN Johan | 67 |
35 | WILLEMS Frederik | 67 |