Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 50
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Boonen
1
82 kgDe Fauw
2
77 kgSteegmans
5
82 kgWillems
9
67 kgDe Schrooder
10
61 kgRenders
11
63 kgNuyens
14
68 kgCoenen
15
67 kgHovelijnck
19
75 kgVan Goolen
23
70 kgCaethoven
24
67 kgDevolder
28
72 kgKuyckx
29
68 kgde Wilde
31
74 kgVan Hecke
32
69 kgLisabeth
35
75 kgHabeaux
37
68 kgAbakoumov
46
68 kgDe Weert
48
70 kgGilbert
52
75 kg
1
82 kgDe Fauw
2
77 kgSteegmans
5
82 kgWillems
9
67 kgDe Schrooder
10
61 kgRenders
11
63 kgNuyens
14
68 kgCoenen
15
67 kgHovelijnck
19
75 kgVan Goolen
23
70 kgCaethoven
24
67 kgDevolder
28
72 kgKuyckx
29
68 kgde Wilde
31
74 kgVan Hecke
32
69 kgLisabeth
35
75 kgHabeaux
37
68 kgAbakoumov
46
68 kgDe Weert
48
70 kgGilbert
52
75 kg
Weight (KG) →
Result →
82
61
1
52
# | Rider | Weight (KG) |
---|---|---|
1 | BOONEN Tom | 82 |
2 | DE FAUW Dimitri | 77 |
5 | STEEGMANS Gert | 82 |
9 | WILLEMS Frederik | 67 |
10 | DE SCHROODER Benny | 61 |
11 | RENDERS Sven | 63 |
14 | NUYENS Nick | 68 |
15 | COENEN Johan | 67 |
19 | HOVELIJNCK Kurt | 75 |
23 | VAN GOOLEN Jurgen | 70 |
24 | CAETHOVEN Steven | 67 |
28 | DEVOLDER Stijn | 72 |
29 | KUYCKX Jan | 68 |
31 | DE WILDE Sjef | 74 |
32 | VAN HECKE Preben | 69 |
35 | LISABETH Kenny | 75 |
37 | HABEAUX Grégory | 68 |
46 | ABAKOUMOV Igor | 68 |
48 | DE WEERT Kevin | 70 |
52 | GILBERT Philippe | 75 |