Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.3 * weight - 71
This means that on average for every extra kilogram weight a rider loses 1.3 positions in the result.
Wynants
1
74 kgPauwels
4
65 kgHabeaux
5
68 kgVerbist
6
73 kgMeersman
10
63 kgIngels
16
70 kgDe Greef
22
77 kgPardini
24
68 kgVan Avermaet
26
74 kgVandewalle
29
74 kgCornu
31
78 kgRoelandts
38
78 kgVandenbergh
39
86 kgNeirynck
40
78 kgIsta
42
70 kgWeylandt
43
72 kgNeirynck
47
71 kg
1
74 kgPauwels
4
65 kgHabeaux
5
68 kgVerbist
6
73 kgMeersman
10
63 kgIngels
16
70 kgDe Greef
22
77 kgPardini
24
68 kgVan Avermaet
26
74 kgVandewalle
29
74 kgCornu
31
78 kgRoelandts
38
78 kgVandenbergh
39
86 kgNeirynck
40
78 kgIsta
42
70 kgWeylandt
43
72 kgNeirynck
47
71 kg
Weight (KG) →
Result →
86
63
1
47
# | Rider | Weight (KG) |
---|---|---|
1 | WYNANTS Maarten | 74 |
4 | PAUWELS Serge | 65 |
5 | HABEAUX Grégory | 68 |
6 | VERBIST Evert | 73 |
10 | MEERSMAN Gianni | 63 |
16 | INGELS Nick | 70 |
22 | DE GREEF Francis | 77 |
24 | PARDINI Olivier | 68 |
26 | VAN AVERMAET Greg | 74 |
29 | VANDEWALLE Kristof | 74 |
31 | CORNU Dominique | 78 |
38 | ROELANDTS Jürgen | 78 |
39 | VANDENBERGH Stijn | 86 |
40 | NEIRYNCK Stijn | 78 |
42 | ISTA Kevyn | 70 |
43 | WEYLANDT Wouter | 72 |
47 | NEIRYNCK Kevin | 71 |