Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 44
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Van Avermaet
1
74 kgVanspeybrouck
3
76 kgVandenbergh
4
86 kgDe Greef
6
77 kgRoelandts
8
78 kgSuray
9
67 kgPolazzi
10
63 kgVanendert
13
62 kgNeyens
14
74 kgHermans
16
72 kgDe Gendt
18
73 kgNeirynck
20
78 kgMaes
22
78 kgPratte
23
67 kgJacobs
25
68 kgCornu
26
78 kgvan Vooren
27
75 kgSchets
29
74 kgZingle
30
67 kgBaugnies
31
69 kg
1
74 kgVanspeybrouck
3
76 kgVandenbergh
4
86 kgDe Greef
6
77 kgRoelandts
8
78 kgSuray
9
67 kgPolazzi
10
63 kgVanendert
13
62 kgNeyens
14
74 kgHermans
16
72 kgDe Gendt
18
73 kgNeirynck
20
78 kgMaes
22
78 kgPratte
23
67 kgJacobs
25
68 kgCornu
26
78 kgvan Vooren
27
75 kgSchets
29
74 kgZingle
30
67 kgBaugnies
31
69 kg
Weight (KG) →
Result →
86
62
1
31
# | Rider | Weight (KG) |
---|---|---|
1 | VAN AVERMAET Greg | 74 |
3 | VANSPEYBROUCK Pieter | 76 |
4 | VANDENBERGH Stijn | 86 |
6 | DE GREEF Francis | 77 |
8 | ROELANDTS Jürgen | 78 |
9 | SURAY Gil | 67 |
10 | POLAZZI Fabio | 63 |
13 | VANENDERT Jelle | 62 |
14 | NEYENS Maarten | 74 |
16 | HERMANS Ben | 72 |
18 | DE GENDT Thomas | 73 |
20 | NEIRYNCK Stijn | 78 |
22 | MAES Nikolas | 78 |
23 | PRATTE Philippe | 67 |
25 | JACOBS Pieter | 68 |
26 | CORNU Dominique | 78 |
27 | VAN VOOREN Steven | 75 |
29 | SCHETS Steve | 74 |
30 | ZINGLE Romain | 67 |
31 | BAUGNIES Jérôme | 69 |