Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 15
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Thijssen
1
74 kgReynders
2
76 kgBeullens
5
79 kgStockman
6
67 kgTaminiaux
8
74 kgHuys
10
61 kgMertens
11
67 kgDevos
12
75 kgVan Poucke
13
68 kgMolly
16
61 kgBastiaens
21
76 kgVan Moer
24
79 kgDe Wilde
26
75 kgVan Tricht
28
64 kgVermeersch
31
81 kgVerschaeve
32
62 kgVanhoof
33
75 kgPaquot
36
70 kgGodart
37
75 kgDe Plus
38
69 kgDewulf
44
74 kg
1
74 kgReynders
2
76 kgBeullens
5
79 kgStockman
6
67 kgTaminiaux
8
74 kgHuys
10
61 kgMertens
11
67 kgDevos
12
75 kgVan Poucke
13
68 kgMolly
16
61 kgBastiaens
21
76 kgVan Moer
24
79 kgDe Wilde
26
75 kgVan Tricht
28
64 kgVermeersch
31
81 kgVerschaeve
32
62 kgVanhoof
33
75 kgPaquot
36
70 kgGodart
37
75 kgDe Plus
38
69 kgDewulf
44
74 kg
Weight (KG) →
Result →
81
61
1
44
# | Rider | Weight (KG) |
---|---|---|
1 | THIJSSEN Gerben | 74 |
2 | REYNDERS Jens | 76 |
5 | BEULLENS Cedric | 79 |
6 | STOCKMAN Abram | 67 |
8 | TAMINIAUX Lionel | 74 |
10 | HUYS Laurens | 61 |
11 | MERTENS Julian | 67 |
12 | DEVOS Han | 75 |
13 | VAN POUCKE Aaron | 68 |
16 | MOLLY Kenny | 61 |
21 | BASTIAENS Ayco | 76 |
24 | VAN MOER Brent | 79 |
26 | DE WILDE Gilles | 75 |
28 | VAN TRICHT Stan | 64 |
31 | VERMEERSCH Florian | 81 |
32 | VERSCHAEVE Viktor | 62 |
33 | VANHOOF Ward | 75 |
36 | PAQUOT Tom | 70 |
37 | GODART Bo | 75 |
38 | DE PLUS Jasper | 69 |
44 | DEWULF Stan | 74 |