Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 48
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Demey
2
56 kgCant
3
57 kgHannes
5
51 kgKopecky
7
66 kgDruyts
8
62 kgD'hoore
9
63 kgVandenbroucke
10
63 kgDuyck
12
60 kgVan Loy
13
65 kgFranck
14
51 kgCastrique
18
63 kgDocx
20
52 kgMichiels
22
60 kgBeckers
25
67 kgVandenbulcke
26
60 kgVan de Velde
27
58 kgDelbaere
30
51 kgVerdonschot
31
52 kgSels
40
65 kgVekemans
43
52 kgPeeters
46
54 kg
2
56 kgCant
3
57 kgHannes
5
51 kgKopecky
7
66 kgDruyts
8
62 kgD'hoore
9
63 kgVandenbroucke
10
63 kgDuyck
12
60 kgVan Loy
13
65 kgFranck
14
51 kgCastrique
18
63 kgDocx
20
52 kgMichiels
22
60 kgBeckers
25
67 kgVandenbulcke
26
60 kgVan de Velde
27
58 kgDelbaere
30
51 kgVerdonschot
31
52 kgSels
40
65 kgVekemans
43
52 kgPeeters
46
54 kg
Weight (KG) →
Result →
67
51
2
46
# | Rider | Weight (KG) |
---|---|---|
2 | DEMEY Valerie | 56 |
3 | CANT Sanne | 57 |
5 | HANNES Kaat | 51 |
7 | KOPECKY Lotte | 66 |
8 | DRUYTS Kelly | 62 |
9 | D'HOORE Jolien | 63 |
10 | VANDENBROUCKE Saartje | 63 |
12 | DUYCK Ann-Sophie | 60 |
13 | VAN LOY Ellen | 65 |
14 | FRANCK Alicia | 51 |
18 | CASTRIQUE Alana | 63 |
20 | DOCX Mieke | 52 |
22 | MICHIELS Githa | 60 |
25 | BECKERS Isabelle | 67 |
26 | VANDENBULCKE Jesse | 60 |
27 | VAN DE VELDE Julie | 58 |
30 | DELBAERE Fien | 51 |
31 | VERDONSCHOT Laura | 52 |
40 | SELS Loes | 65 |
43 | VEKEMANS Anisha | 52 |
46 | PEETERS Jinse | 54 |