Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 28
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Kopecky
1
66 kgD'hoore
2
63 kgde Baat
6
56 kgVandenbulcke
7
60 kgDocx
8
52 kgDelbaere
9
51 kgFranck
10
51 kgDemey
12
56 kgVandenbroucke
13
63 kgVan Loy
17
65 kgTruyen
21
55 kgVan de Velde
27
58 kgSels
29
65 kgCant
30
57 kgBastiaenssen
37
62 kgLacompte
42
65 kgPeeters
46
54 kgCastrique
52
63 kgHannes
61
51 kg
1
66 kgD'hoore
2
63 kgde Baat
6
56 kgVandenbulcke
7
60 kgDocx
8
52 kgDelbaere
9
51 kgFranck
10
51 kgDemey
12
56 kgVandenbroucke
13
63 kgVan Loy
17
65 kgTruyen
21
55 kgVan de Velde
27
58 kgSels
29
65 kgCant
30
57 kgBastiaenssen
37
62 kgLacompte
42
65 kgPeeters
46
54 kgCastrique
52
63 kgHannes
61
51 kg
Weight (KG) →
Result →
66
51
1
61
# | Rider | Weight (KG) |
---|---|---|
1 | KOPECKY Lotte | 66 |
2 | D'HOORE Jolien | 63 |
6 | DE BAAT Kim | 56 |
7 | VANDENBULCKE Jesse | 60 |
8 | DOCX Mieke | 52 |
9 | DELBAERE Fien | 51 |
10 | FRANCK Alicia | 51 |
12 | DEMEY Valerie | 56 |
13 | VANDENBROUCKE Saartje | 63 |
17 | VAN LOY Ellen | 65 |
21 | TRUYEN Marthe | 55 |
27 | VAN DE VELDE Julie | 58 |
29 | SELS Loes | 65 |
30 | CANT Sanne | 57 |
37 | BASTIAENSSEN Fauve | 62 |
42 | LACOMPTE Amber | 65 |
46 | PEETERS Jinse | 54 |
52 | CASTRIQUE Alana | 63 |
61 | HANNES Kaat | 51 |