Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.5 * weight - 51
This means that on average for every extra kilogram weight a rider loses 1.5 positions in the result.
Kopecky
1
66 kgDruyts
3
62 kgDe Wilde
4
62 kgGhekiere
5
52 kgDocx
10
52 kgDemey
11
56 kgTas
13
55 kgPeeters
15
54 kgDelbaere
20
51 kgFranck
27
51 kgVan Loy
29
65 kgVandenbroucke
35
63 kgBrouckaert
37
55 kgVerdonschot
59
52 kgCant
64
57 kgde Baat
68
56 kgVan de Velde
69
58 kgLacompte
71
65 kgVan Mechelen
87
61 kgSels
108
65 kg
1
66 kgDruyts
3
62 kgDe Wilde
4
62 kgGhekiere
5
52 kgDocx
10
52 kgDemey
11
56 kgTas
13
55 kgPeeters
15
54 kgDelbaere
20
51 kgFranck
27
51 kgVan Loy
29
65 kgVandenbroucke
35
63 kgBrouckaert
37
55 kgVerdonschot
59
52 kgCant
64
57 kgde Baat
68
56 kgVan de Velde
69
58 kgLacompte
71
65 kgVan Mechelen
87
61 kgSels
108
65 kg
Weight (KG) →
Result →
66
51
1
108
# | Rider | Weight (KG) |
---|---|---|
1 | KOPECKY Lotte | 66 |
3 | DRUYTS Kelly | 62 |
4 | DE WILDE Julie | 62 |
5 | GHEKIERE Justine | 52 |
10 | DOCX Mieke | 52 |
11 | DEMEY Valerie | 56 |
13 | TAS Sandrine | 55 |
15 | PEETERS Jinse | 54 |
20 | DELBAERE Fien | 51 |
27 | FRANCK Alicia | 51 |
29 | VAN LOY Ellen | 65 |
35 | VANDENBROUCKE Saartje | 63 |
37 | BROUCKAERT Sophie | 55 |
59 | VERDONSCHOT Laura | 52 |
64 | CANT Sanne | 57 |
68 | DE BAAT Kim | 56 |
69 | VAN DE VELDE Julie | 58 |
71 | LACOMPTE Amber | 65 |
87 | VAN MECHELEN Gloria | 61 |
108 | SELS Loes | 65 |