Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 62
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Steels
1
73 kgOmloop
2
78 kgVerheyen
3
68 kgSteegmans
4
82 kgMattan
5
69 kgGilbert
6
75 kgVanthourenhout
7
65 kgCaethoven
8
67 kgDe Waele
11
71 kgCretskens
12
75 kgAmorison
13
70 kgHoste
14
80 kgVan Hecke
15
69 kgHulsmans
18
75 kgCoenen
19
67 kgPlanckaert
20
70 kgMertens
21
67 kgVerstrepen
22
66 kgVansevenant
23
65 kgBrandt
24
66 kgVan Hyfte
26
70 kg
1
73 kgOmloop
2
78 kgVerheyen
3
68 kgSteegmans
4
82 kgMattan
5
69 kgGilbert
6
75 kgVanthourenhout
7
65 kgCaethoven
8
67 kgDe Waele
11
71 kgCretskens
12
75 kgAmorison
13
70 kgHoste
14
80 kgVan Hecke
15
69 kgHulsmans
18
75 kgCoenen
19
67 kgPlanckaert
20
70 kgMertens
21
67 kgVerstrepen
22
66 kgVansevenant
23
65 kgBrandt
24
66 kgVan Hyfte
26
70 kg
Weight (KG) →
Result →
82
65
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | STEELS Tom | 73 |
2 | OMLOOP Geert | 78 |
3 | VERHEYEN Geert | 68 |
4 | STEEGMANS Gert | 82 |
5 | MATTAN Nico | 69 |
6 | GILBERT Philippe | 75 |
7 | VANTHOURENHOUT Sven | 65 |
8 | CAETHOVEN Steven | 67 |
11 | DE WAELE Bert | 71 |
12 | CRETSKENS Wilfried | 75 |
13 | AMORISON Frédéric | 70 |
14 | HOSTE Leif | 80 |
15 | VAN HECKE Preben | 69 |
18 | HULSMANS Kevin | 75 |
19 | COENEN Johan | 67 |
20 | PLANCKAERT Jo | 70 |
21 | MERTENS Pieter | 67 |
22 | VERSTREPEN Johan | 66 |
23 | VANSEVENANT Wim | 65 |
24 | BRANDT Christophe | 66 |
26 | VAN HYFTE Paul | 70 |