Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 10
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Devolder
1
72 kgMeersman
2
63 kgBakelants
3
67 kgLeukemans
4
67 kgVanmarcke
5
77 kgGilbert
6
75 kgVan Avermaet
7
74 kgVan den Broeck
8
69 kgDe Gendt
9
73 kgDe Vreese
10
78 kgVantomme
11
63 kgPauwels
12
65 kgPauwels
13
60 kgBille
14
67 kgSeeldraeyers
15
60 kgDegand
16
63 kgVan Keirsbulck
17
89 kg
1
72 kgMeersman
2
63 kgBakelants
3
67 kgLeukemans
4
67 kgVanmarcke
5
77 kgGilbert
6
75 kgVan Avermaet
7
74 kgVan den Broeck
8
69 kgDe Gendt
9
73 kgDe Vreese
10
78 kgVantomme
11
63 kgPauwels
12
65 kgPauwels
13
60 kgBille
14
67 kgSeeldraeyers
15
60 kgDegand
16
63 kgVan Keirsbulck
17
89 kg
Weight (KG) →
Result →
89
60
1
17
# | Rider | Weight (KG) |
---|---|---|
1 | DEVOLDER Stijn | 72 |
2 | MEERSMAN Gianni | 63 |
3 | BAKELANTS Jan | 67 |
4 | LEUKEMANS Björn | 67 |
5 | VANMARCKE Sep | 77 |
6 | GILBERT Philippe | 75 |
7 | VAN AVERMAET Greg | 74 |
8 | VAN DEN BROECK Jurgen | 69 |
9 | DE GENDT Thomas | 73 |
10 | DE VREESE Laurens | 78 |
11 | VANTOMME Maxime | 63 |
12 | PAUWELS Serge | 65 |
13 | PAUWELS Kevin | 60 |
14 | BILLE Gaëtan | 67 |
15 | SEELDRAEYERS Kevin | 60 |
16 | DEGAND Thomas | 63 |
17 | VAN KEIRSBULCK Guillaume | 89 |