Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 48
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Côté
1
74 kgBoivin
2
78 kgPerry
3
71 kgMiles
4
64 kgFoley
8
72 kgDal-Cin
9
77 kgPickrell
10
72 kgRussell
11
64 kgMuir
16
72 kgLachance
20
72 kgConly
21
63 kgFroner
23
63 kgPlamondon
26
72 kgCarreau
32
68 kgRoberge
33
72 kgOliphant
34
61 kgJussaume
38
70 kgGee
41
72 kgJuneau
45
67 kgParisella
46
78 kg
1
74 kgBoivin
2
78 kgPerry
3
71 kgMiles
4
64 kgFoley
8
72 kgDal-Cin
9
77 kgPickrell
10
72 kgRussell
11
64 kgMuir
16
72 kgLachance
20
72 kgConly
21
63 kgFroner
23
63 kgPlamondon
26
72 kgCarreau
32
68 kgRoberge
33
72 kgOliphant
34
61 kgJussaume
38
70 kgGee
41
72 kgJuneau
45
67 kgParisella
46
78 kg
Weight (KG) →
Result →
78
61
1
46
# | Rider | Weight (KG) |
---|---|---|
1 | CÔTÉ Pier-André | 74 |
2 | BOIVIN Guillaume | 78 |
3 | PERRY Benjamin | 71 |
4 | MILES Carson | 64 |
8 | FOLEY Michael | 72 |
9 | DAL-CIN Matteo | 77 |
10 | PICKRELL Riley | 72 |
11 | RUSSELL Evan | 64 |
16 | MUIR Warren | 72 |
20 | LACHANCE Jean-Michel | 72 |
21 | CONLY Lukas | 63 |
23 | FRONER Axel | 63 |
26 | PLAMONDON Joel | 72 |
32 | CARREAU Lukas | 68 |
33 | ROBERGE Adam | 72 |
34 | OLIPHANT Aidan | 61 |
38 | JUSSAUME Tristan | 70 |
41 | GEE Derek | 72 |
45 | JUNEAU Francis | 67 |
46 | PARISELLA Raphael | 78 |