Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 10
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Côté
6
74 kgPiccoli
7
65 kgGee
9
72 kgValenti
10
69 kgWalton
11
68 kgChrétien
13
65 kgInkster
18
73 kgKleban
19
58 kgOliphant
21
61 kgJussaume
23
70 kgCouture
24
67 kgRaymond
27
67 kgGagné
28
64 kgHadfield
32
73 kgRussell
34
64 kgLeonard
35
60 kgKelly
36
84 kgPerry
37
71 kgBerczynski
39
71 kg
6
74 kgPiccoli
7
65 kgGee
9
72 kgValenti
10
69 kgWalton
11
68 kgChrétien
13
65 kgInkster
18
73 kgKleban
19
58 kgOliphant
21
61 kgJussaume
23
70 kgCouture
24
67 kgRaymond
27
67 kgGagné
28
64 kgHadfield
32
73 kgRussell
34
64 kgLeonard
35
60 kgKelly
36
84 kgPerry
37
71 kgBerczynski
39
71 kg
Weight (KG) →
Result →
84
58
6
39
# | Rider | Weight (KG) |
---|---|---|
6 | CÔTÉ Pier-André | 74 |
7 | PICCOLI James | 65 |
9 | GEE Derek | 72 |
10 | VALENTI Luke | 69 |
11 | WALTON Jonas | 68 |
13 | CHRÉTIEN Charles-Étienne | 65 |
18 | INKSTER Eric | 73 |
19 | KLEBAN Nick | 58 |
21 | OLIPHANT Aidan | 61 |
23 | JUSSAUME Tristan | 70 |
24 | COUTURE Samuel | 67 |
27 | RAYMOND Louis | 67 |
28 | GAGNÉ Étienne | 64 |
32 | HADFIELD Gavin | 73 |
34 | RUSSELL Evan | 64 |
35 | LEONARD Michael | 60 |
36 | KELLY Declan | 84 |
37 | PERRY Benjamin | 71 |
39 | BERCZYNSKI Casper | 71 |