Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.5 * weight - 70
This means that on average for every extra kilogram weight a rider loses 1.5 positions in the result.
Henao
1
61 kgOchoa
3
61 kgPantano
4
61 kgPedraza
5
58 kgUrán
7
63 kgParra
10
51 kgAtapuma
11
59 kgBeltrán
13
59 kgLópez
16
59 kgReyes
18
55 kgSerpa
19
64 kgBohórquez
20
68 kgRamirez
26
69 kgQuintero
31
63 kgAguirre
35
55 kgSierra
36
66 kgParedes
37
66 kgContreras
38
68 kgGaviria
41
71 kgChalapud
42
63 kgSuaza
43
66 kg
1
61 kgOchoa
3
61 kgPantano
4
61 kgPedraza
5
58 kgUrán
7
63 kgParra
10
51 kgAtapuma
11
59 kgBeltrán
13
59 kgLópez
16
59 kgReyes
18
55 kgSerpa
19
64 kgBohórquez
20
68 kgRamirez
26
69 kgQuintero
31
63 kgAguirre
35
55 kgSierra
36
66 kgParedes
37
66 kgContreras
38
68 kgGaviria
41
71 kgChalapud
42
63 kgSuaza
43
66 kg
Weight (KG) →
Result →
71
51
1
43
# | Rider | Weight (KG) |
---|---|---|
1 | HENAO Sergio | 61 |
3 | OCHOA Diego Antonio | 61 |
4 | PANTANO Jarlinson | 61 |
5 | PEDRAZA Wálter Fernando | 58 |
7 | URÁN Rigoberto | 63 |
10 | PARRA Heiner Rodrigo | 51 |
11 | ATAPUMA Darwin | 59 |
13 | BELTRÁN Edward | 59 |
16 | LÓPEZ Miguel Ángel | 59 |
18 | REYES Aldemar | 55 |
19 | SERPA José Rodolfo | 64 |
20 | BOHÓRQUEZ Hernando | 68 |
26 | RAMIREZ Brayan Steven | 69 |
31 | QUINTERO Carlos | 63 |
35 | AGUIRRE Hernán Ricardo | 55 |
36 | SIERRA Yecid Arturo | 66 |
37 | PAREDES Wilmar | 66 |
38 | CONTRERAS Rodrigo | 68 |
41 | GAVIRIA Fernando | 71 |
42 | CHALAPUD Robinson | 63 |
43 | SUAZA Bernardo | 66 |