Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 7
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Higuita
1
57 kgBernal
2
60 kgMartínez
3
63 kgQuintana
4
58 kgChaves
5
55 kgHenao
6
61 kgÁvila
7
61 kgMuñoz
9
63 kgRubiano
10
58 kgSierra
12
66 kgReyes
13
55 kgChaparro
14
54 kgChalapud
17
63 kgOchoa
18
61 kgAguirre
19
55 kgPedraza
20
58 kgQuintana
24
58 kgHenao
25
57 kgAtapuma
27
59 kgAnacona
31
65 kgOrdoñez
33
67 kgTorres
37
56 kgAcosta
43
58 kg
1
57 kgBernal
2
60 kgMartínez
3
63 kgQuintana
4
58 kgChaves
5
55 kgHenao
6
61 kgÁvila
7
61 kgMuñoz
9
63 kgRubiano
10
58 kgSierra
12
66 kgReyes
13
55 kgChaparro
14
54 kgChalapud
17
63 kgOchoa
18
61 kgAguirre
19
55 kgPedraza
20
58 kgQuintana
24
58 kgHenao
25
57 kgAtapuma
27
59 kgAnacona
31
65 kgOrdoñez
33
67 kgTorres
37
56 kgAcosta
43
58 kg
Weight (KG) →
Result →
67
54
1
43
# | Rider | Weight (KG) |
---|---|---|
1 | HIGUITA Sergio | 57 |
2 | BERNAL Egan | 60 |
3 | MARTÍNEZ Daniel Felipe | 63 |
4 | QUINTANA Nairo | 58 |
5 | CHAVES Esteban | 55 |
6 | HENAO Sergio | 61 |
7 | ÁVILA Edwin | 61 |
9 | MUÑOZ Cristian Camilo | 63 |
10 | RUBIANO Miguel Angel | 58 |
12 | SIERRA Yecid Arturo | 66 |
13 | REYES Aldemar | 55 |
14 | CHAPARRO Didier | 54 |
17 | CHALAPUD Robinson | 63 |
18 | OCHOA Diego Antonio | 61 |
19 | AGUIRRE Hernán Ricardo | 55 |
20 | PEDRAZA Wálter Fernando | 58 |
24 | QUINTANA Dayer | 58 |
25 | HENAO Sebastián | 57 |
27 | ATAPUMA Darwin | 59 |
31 | ANACONA Winner | 65 |
33 | ORDOÑEZ Santiago | 67 |
37 | TORRES Rodolfo Andrés | 56 |
43 | ACOSTA Ruben Dario | 58 |