Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 29
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Vandborg
1
75 kgQuaade
2
77 kgRasmussen
4
88 kgNorman Leth
5
75 kgMortensen
6
70 kgChristensen
8
69 kgMørkøv
10
71 kgWürtz Schmidt
12
70 kgMadsen
13
67 kgJuul-Jensen
14
73 kgSteensen
16
65 kgGuldhammer
19
66 kgHansen
20
60 kgValgren
21
71 kgVinther
22
68 kgVinjebo
23
67 kgKragh Andersen
25
72 kgFolsach
26
81 kgKragh Andersen
41
73 kgVeyhe
47
77 kg
1
75 kgQuaade
2
77 kgRasmussen
4
88 kgNorman Leth
5
75 kgMortensen
6
70 kgChristensen
8
69 kgMørkøv
10
71 kgWürtz Schmidt
12
70 kgMadsen
13
67 kgJuul-Jensen
14
73 kgSteensen
16
65 kgGuldhammer
19
66 kgHansen
20
60 kgValgren
21
71 kgVinther
22
68 kgVinjebo
23
67 kgKragh Andersen
25
72 kgFolsach
26
81 kgKragh Andersen
41
73 kgVeyhe
47
77 kg
Weight (KG) →
Result →
88
60
1
47
# | Rider | Weight (KG) |
---|---|---|
1 | VANDBORG Brian Bach | 75 |
2 | QUAADE Rasmus | 77 |
4 | RASMUSSEN Alex | 88 |
5 | NORMAN LETH Lasse | 75 |
6 | MORTENSEN Martin | 70 |
8 | CHRISTENSEN Mads | 69 |
10 | MØRKØV Michael | 71 |
12 | WÜRTZ SCHMIDT Mads | 70 |
13 | MADSEN Martin Toft | 67 |
14 | JUUL-JENSEN Christopher | 73 |
16 | STEENSEN André | 65 |
19 | GULDHAMMER Rasmus | 66 |
20 | HANSEN Jesper | 60 |
21 | VALGREN Michael | 71 |
22 | VINTHER Troels Rønning | 68 |
23 | VINJEBO Emil Mielke | 67 |
25 | KRAGH ANDERSEN Asbjørn | 72 |
26 | FOLSACH Casper | 81 |
41 | KRAGH ANDERSEN Søren | 73 |
47 | VEYHE Torkil | 77 |