Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 5
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Quaade
1
77 kgJuul-Jensen
2
73 kgValgren
3
71 kgKragh Andersen
5
72 kgMadsen
6
67 kgRasmussen
7
88 kgSteensen
8
65 kgMortensen
11
70 kgNorman Leth
13
75 kgMørkøv
14
71 kgVinjebo
15
67 kgCort
17
68 kgChristensen
18
69 kgGuldhammer
19
66 kgKragh Andersen
20
73 kgHansen
22
60 kgVinther
24
68 kgPedersen
25
70 kgWürtz Schmidt
27
70 kgKrigbaum
28
79 kgLisson
41
73 kgMuff
60
78 kg
1
77 kgJuul-Jensen
2
73 kgValgren
3
71 kgKragh Andersen
5
72 kgMadsen
6
67 kgRasmussen
7
88 kgSteensen
8
65 kgMortensen
11
70 kgNorman Leth
13
75 kgMørkøv
14
71 kgVinjebo
15
67 kgCort
17
68 kgChristensen
18
69 kgGuldhammer
19
66 kgKragh Andersen
20
73 kgHansen
22
60 kgVinther
24
68 kgPedersen
25
70 kgWürtz Schmidt
27
70 kgKrigbaum
28
79 kgLisson
41
73 kgMuff
60
78 kg
Weight (KG) →
Result →
88
60
1
60
# | Rider | Weight (KG) |
---|---|---|
1 | QUAADE Rasmus | 77 |
2 | JUUL-JENSEN Christopher | 73 |
3 | VALGREN Michael | 71 |
5 | KRAGH ANDERSEN Asbjørn | 72 |
6 | MADSEN Martin Toft | 67 |
7 | RASMUSSEN Alex | 88 |
8 | STEENSEN André | 65 |
11 | MORTENSEN Martin | 70 |
13 | NORMAN LETH Lasse | 75 |
14 | MØRKØV Michael | 71 |
15 | VINJEBO Emil Mielke | 67 |
17 | CORT Magnus | 68 |
18 | CHRISTENSEN Mads | 69 |
19 | GULDHAMMER Rasmus | 66 |
20 | KRAGH ANDERSEN Søren | 73 |
22 | HANSEN Jesper | 60 |
24 | VINTHER Troels Rønning | 68 |
25 | PEDERSEN Mads | 70 |
27 | WÜRTZ SCHMIDT Mads | 70 |
28 | KRIGBAUM Mathias | 79 |
41 | LISSON Christoffer | 73 |
60 | MUFF Frederik | 78 |