Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 103
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
Pedersen
1
76 kgLarsen
2
74 kgAsgreen
3
75 kgPrice-Pejtersen
5
83 kgBjerg
6
78 kgJohansen
8
77 kgMadsen
9
67 kgPedersen
10
74 kgWang
11
70 kgMuff
12
78 kgSander Hansen
13
68 kgToftemark
17
73 kgBregnhøj
21
63 kgDahl
23
62 kgGudnitz
27
69 kgKongstad
29
75 kgHertz
30
68 kgHobolth
38
71 kgLau
39
62 kg
1
76 kgLarsen
2
74 kgAsgreen
3
75 kgPrice-Pejtersen
5
83 kgBjerg
6
78 kgJohansen
8
77 kgMadsen
9
67 kgPedersen
10
74 kgWang
11
70 kgMuff
12
78 kgSander Hansen
13
68 kgToftemark
17
73 kgBregnhøj
21
63 kgDahl
23
62 kgGudnitz
27
69 kgKongstad
29
75 kgHertz
30
68 kgHobolth
38
71 kgLau
39
62 kg
Weight (KG) →
Result →
83
62
1
39
# | Rider | Weight (KG) |
---|---|---|
1 | PEDERSEN Mads | 76 |
2 | LARSEN Niklas | 74 |
3 | ASGREEN Kasper | 75 |
5 | PRICE-PEJTERSEN Johan | 83 |
6 | BJERG Mikkel | 78 |
8 | JOHANSEN Julius | 77 |
9 | MADSEN Martin Toft | 67 |
10 | PEDERSEN Rasmus Søjberg | 74 |
11 | WANG Gustav | 70 |
12 | MUFF Frederik | 78 |
13 | SANDER HANSEN Marcus | 68 |
17 | TOFTEMARK Lucas | 73 |
21 | BREGNHØJ Mathias | 63 |
23 | DAHL Gustav Frederik | 62 |
27 | GUDNITZ Joshua | 69 |
29 | KONGSTAD Alfred | 75 |
30 | HERTZ Benjamin | 68 |
38 | HOBOLTH Marius | 71 |
39 | LAU Gustav Ferdinand | 62 |