Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 24
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Larsen
1
74 kgCharmig
2
66 kgPedersen
4
71 kgGregaard
5
66 kgNorsgaard
6
88 kgAndreassen
7
68 kgRodenberg
8
73 kgStokbro
10
70 kgVingegaard
13
58 kgBjerg
14
78 kgLyhne
15
61 kgWallin
18
78 kgEgholm
20
69 kgHonoré
25
68 kgKongstad
29
75 kgSchultz
38
60 kgPedersen
40
84 kgIversen
52
77 kgToudal
53
72 kgStigaard
69
74 kgBrixen
84
73 kgKron
90
63 kgRasmussen Ram
105
73 kg
1
74 kgCharmig
2
66 kgPedersen
4
71 kgGregaard
5
66 kgNorsgaard
6
88 kgAndreassen
7
68 kgRodenberg
8
73 kgStokbro
10
70 kgVingegaard
13
58 kgBjerg
14
78 kgLyhne
15
61 kgWallin
18
78 kgEgholm
20
69 kgHonoré
25
68 kgKongstad
29
75 kgSchultz
38
60 kgPedersen
40
84 kgIversen
52
77 kgToudal
53
72 kgStigaard
69
74 kgBrixen
84
73 kgKron
90
63 kgRasmussen Ram
105
73 kg
Weight (KG) →
Result →
88
58
1
105
# | Rider | Weight (KG) |
---|---|---|
1 | LARSEN Niklas | 74 |
2 | CHARMIG Anthon | 66 |
4 | PEDERSEN Casper | 71 |
5 | GREGAARD Jonas | 66 |
6 | NORSGAARD Mathias | 88 |
7 | ANDREASSEN Simon | 68 |
8 | RODENBERG Frederik | 73 |
10 | STOKBRO Andreas | 70 |
13 | VINGEGAARD Jonas | 58 |
14 | BJERG Mikkel | 78 |
15 | LYHNE Daniel | 61 |
18 | WALLIN Rasmus Bøgh | 78 |
20 | EGHOLM Jakob | 69 |
25 | HONORÉ Mikkel Frølich | 68 |
29 | KONGSTAD Tobias | 75 |
38 | SCHULTZ Jesper | 60 |
40 | PEDERSEN Rasmus Lund | 84 |
52 | IVERSEN Rasmus Byriel | 77 |
53 | TOUDAL Emil | 72 |
69 | STIGAARD Rasmus | 74 |
84 | BRIXEN Andreas Aidel | 73 |
90 | KRON Andreas | 63 |
105 | RASMUSSEN RAM Asbjørn | 73 |