Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.5 * weight + 144
This means that on average for every extra kilogram weight a rider loses -1.5 positions in the result.
Charmig
1
66 kgNorsgaard
2
88 kgLarsen
3
74 kgAndreassen
4
68 kgEgholm
5
69 kgJohansen
7
77 kgPedersen
8
84 kgRodenberg
9
73 kgLarsen
10
72 kgKron
16
63 kgBjerg
17
78 kgIversen
18
77 kgStokbro
20
70 kgHulgaard
26
73 kgAaskov Pallesen
32
60 kgRasmussen Ram
66
73 kgMalmberg
79
68 kgSalby
82
68 kgStigaard
89
74 kgBerg
101
75 kgKnudsen
102
59 kg
1
66 kgNorsgaard
2
88 kgLarsen
3
74 kgAndreassen
4
68 kgEgholm
5
69 kgJohansen
7
77 kgPedersen
8
84 kgRodenberg
9
73 kgLarsen
10
72 kgKron
16
63 kgBjerg
17
78 kgIversen
18
77 kgStokbro
20
70 kgHulgaard
26
73 kgAaskov Pallesen
32
60 kgRasmussen Ram
66
73 kgMalmberg
79
68 kgSalby
82
68 kgStigaard
89
74 kgBerg
101
75 kgKnudsen
102
59 kg
Weight (KG) →
Result →
88
59
1
102
# | Rider | Weight (KG) |
---|---|---|
1 | CHARMIG Anthon | 66 |
2 | NORSGAARD Mathias | 88 |
3 | LARSEN Niklas | 74 |
4 | ANDREASSEN Simon | 68 |
5 | EGHOLM Jakob | 69 |
7 | JOHANSEN Julius | 77 |
8 | PEDERSEN Rasmus Lund | 84 |
9 | RODENBERG Frederik | 73 |
10 | LARSEN Mathias Alexander Erik | 72 |
16 | KRON Andreas | 63 |
17 | BJERG Mikkel | 78 |
18 | IVERSEN Rasmus Byriel | 77 |
20 | STOKBRO Andreas | 70 |
26 | HULGAARD Morten | 73 |
32 | AASKOV PALLESEN Jeppe | 60 |
66 | RASMUSSEN RAM Asbjørn | 73 |
79 | MALMBERG Matias | 68 |
82 | SALBY Alexander | 68 |
89 | STIGAARD Rasmus | 74 |
101 | BERG Mads Schelde | 75 |
102 | KNUDSEN Oliver | 59 |