Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.5 * weight + 142
This means that on average for every extra kilogram weight a rider loses -1.5 positions in the result.
Johansen
1
77 kgHindsgaul
2
67 kgSkjelmose
5
65 kgLarsen
7
72 kgAndersen
8
56 kgWandahl
9
61 kgPrice-Pejtersen
12
83 kgWacker
15
68 kgJensen
18
75 kgSander Hansen
26
68 kgMalmberg
27
68 kgHenneberg
47
67 kgHertz
54
68 kgHøiberg Klinke
56
65 kgBahr
58
63 kgVosgerau
69
69 kgFoldager
72
69 kgKnudsen
84
59 kgGuld
88
67 kgHellemose
94
65 kgMøller
95
67 kg
1
77 kgHindsgaul
2
67 kgSkjelmose
5
65 kgLarsen
7
72 kgAndersen
8
56 kgWandahl
9
61 kgPrice-Pejtersen
12
83 kgWacker
15
68 kgJensen
18
75 kgSander Hansen
26
68 kgMalmberg
27
68 kgHenneberg
47
67 kgHertz
54
68 kgHøiberg Klinke
56
65 kgBahr
58
63 kgVosgerau
69
69 kgFoldager
72
69 kgKnudsen
84
59 kgGuld
88
67 kgHellemose
94
65 kgMøller
95
67 kg
Weight (KG) →
Result →
83
56
1
95
# | Rider | Weight (KG) |
---|---|---|
1 | JOHANSEN Julius | 77 |
2 | HINDSGAUL Jacob | 67 |
5 | SKJELMOSE Mattias | 65 |
7 | LARSEN Mathias Alexander Erik | 72 |
8 | ANDERSEN Sander | 56 |
9 | WANDAHL Frederik | 61 |
12 | PRICE-PEJTERSEN Johan | 83 |
15 | WACKER Ludvig Anton | 68 |
18 | JENSEN Frederik Irgens | 75 |
26 | SANDER HANSEN Marcus | 68 |
27 | MALMBERG Matias | 68 |
47 | HENNEBERG Magnus | 67 |
54 | HERTZ Benjamin | 68 |
56 | HØIBERG KLINKE Mads | 65 |
58 | BAHR Christian | 63 |
69 | VOSGERAU Søren | 69 |
72 | FOLDAGER Anders | 69 |
84 | KNUDSEN Oliver | 59 |
88 | GULD Daniel | 67 |
94 | HELLEMOSE Asbjørn | 65 |
95 | MØLLER Ilannguaq | 67 |