Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.4 * weight - 59
This means that on average for every extra kilogram weight a rider loses 1.4 positions in the result.
Hindsgaul
1
67 kgHertz
2
68 kgSkot-Hansen
5
62 kgWandahl
8
61 kgWacker
11
68 kgSander Hansen
14
68 kgHenneberg
16
67 kgFoldager
25
69 kgRosenlund
27
72 kgAndresen
28
69 kgHøiberg Klinke
33
65 kgVosgerau
34
69 kgGuld
41
67 kgDue Kaspersen
42
76 kgJørgensen
46
68 kgMengel
51
65 kgSchandorff Iwersen
57
62 kgMøller
63
67 kgErringsø
66
67 kgKjeldsen
72
69 kgLarsen
81
70 kg
1
67 kgHertz
2
68 kgSkot-Hansen
5
62 kgWandahl
8
61 kgWacker
11
68 kgSander Hansen
14
68 kgHenneberg
16
67 kgFoldager
25
69 kgRosenlund
27
72 kgAndresen
28
69 kgHøiberg Klinke
33
65 kgVosgerau
34
69 kgGuld
41
67 kgDue Kaspersen
42
76 kgJørgensen
46
68 kgMengel
51
65 kgSchandorff Iwersen
57
62 kgMøller
63
67 kgErringsø
66
67 kgKjeldsen
72
69 kgLarsen
81
70 kg
Weight (KG) →
Result →
76
61
1
81
# | Rider | Weight (KG) |
---|---|---|
1 | HINDSGAUL Jacob | 67 |
2 | HERTZ Benjamin | 68 |
5 | SKOT-HANSEN Aksel Bech | 62 |
8 | WANDAHL Frederik | 61 |
11 | WACKER Ludvig Anton | 68 |
14 | SANDER HANSEN Marcus | 68 |
16 | HENNEBERG Magnus | 67 |
25 | FOLDAGER Anders | 69 |
27 | ROSENLUND Stian | 72 |
28 | ANDRESEN Tobias Lund | 69 |
33 | HØIBERG KLINKE Mads | 65 |
34 | VOSGERAU Søren | 69 |
41 | GULD Daniel | 67 |
42 | DUE KASPERSEN Kasper | 76 |
46 | JØRGENSEN Adam Holm | 68 |
51 | MENGEL Nikolaj | 65 |
57 | SCHANDORFF IWERSEN Emil | 62 |
63 | MØLLER Ilannguaq | 67 |
66 | ERRINGSØ Frederik | 67 |
72 | KJELDSEN Christian Spang | 69 |
81 | LARSEN Ruben Zilas | 70 |