Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.5 * weight + 138
This means that on average for every extra kilogram weight a rider loses -1.5 positions in the result.
Pedersen
1
84 kgCharmig
2
66 kgJohansen
3
77 kgRodenberg
4
73 kgNorsgaard
5
88 kgStokbro
6
70 kgAndreassen
7
68 kgEgholm
14
69 kgAaskov Pallesen
16
60 kgHonoré
17
68 kgLarsen
18
74 kgJensen
22
75 kgLarsen
24
72 kgIversen
53
77 kgHulgaard
59
73 kgHellemose
69
65 kgKron
71
63 kgAndersen
79
56 kgRasmussen Ram
82
73 kg
1
84 kgCharmig
2
66 kgJohansen
3
77 kgRodenberg
4
73 kgNorsgaard
5
88 kgStokbro
6
70 kgAndreassen
7
68 kgEgholm
14
69 kgAaskov Pallesen
16
60 kgHonoré
17
68 kgLarsen
18
74 kgJensen
22
75 kgLarsen
24
72 kgIversen
53
77 kgHulgaard
59
73 kgHellemose
69
65 kgKron
71
63 kgAndersen
79
56 kgRasmussen Ram
82
73 kg
Weight (KG) →
Result →
88
56
1
82
# | Rider | Weight (KG) |
---|---|---|
1 | PEDERSEN Rasmus Lund | 84 |
2 | CHARMIG Anthon | 66 |
3 | JOHANSEN Julius | 77 |
4 | RODENBERG Frederik | 73 |
5 | NORSGAARD Mathias | 88 |
6 | STOKBRO Andreas | 70 |
7 | ANDREASSEN Simon | 68 |
14 | EGHOLM Jakob | 69 |
16 | AASKOV PALLESEN Jeppe | 60 |
17 | HONORÉ Mikkel Frølich | 68 |
18 | LARSEN Niklas | 74 |
22 | JENSEN Frederik Irgens | 75 |
24 | LARSEN Mathias Alexander Erik | 72 |
53 | IVERSEN Rasmus Byriel | 77 |
59 | HULGAARD Morten | 73 |
69 | HELLEMOSE Asbjørn | 65 |
71 | KRON Andreas | 63 |
79 | ANDERSEN Sander | 56 |
82 | RASMUSSEN RAM Asbjørn | 73 |